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ABSTRACT

In 1987 a NASA panel recommended tile creation of the Mission to Planet Earth. This

mission was intended to apply to remote sensing experience of tile space community to earth

remote sensing to enhance the understanding of the climatalogical processes of our planet and to

determine if, and to what extent, the hydrological cycle of Earth is being affected by human

activity. One of the systems required for the mission was a wide scanning, high gain reflector

antenna system for use in radiometric remote sensing from geostationary orbit.

This work describes research conducted at Virginia Tech into techniques for beam

scanning offset Cassegrain reflector antennas by subreflector translation and rotation.

Background material relevant to beam scanning antenna systems and offset Cassegrain refector

antenna system is presented. A test case is developed based on the background material. The

test case is beam scanned using two geometrical optics methods of determining the optimum

subreflector position for the desired scanned beam direction. Physical optics far-field results are

given for the beam scanned systems. The test case system is found to be capable of beam

scanning over a range of 35 half-power beamwidths while maintaining a 90% beam efficiency or

50 half-power beamwidths while maintaining less than 1 dB of gain loss during scanning.
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Chapter 1

INTRODUCTION

1.1 Overview

In 1987 a committee of the National Aeronautics and Space Administration chaired by

Sally Ride proposed the Mission to Planet Earth [1]. The concept of this long-term experiment

is to draw upon the space community's vast experience with remote sensing from unmanned

inter-planetary probes to assess better the changing climate of Earth [1]. High resolution remote

sensing is crucial to the success of this project [2]. It would be advantageous to place these

remote sensing packages in geostationary orbits to allow real-time tracking of developing micro-

scale weather systems such as convective cells and to decrease scene revisit time below what can

be achieved with a reasonable constellation of low earth orbit platforms. Unlike infrared and

visual light imaging, high resolution microwave radiometry has previotlsly been performed from

only low-earth orbits because very large antennas are required at geostationary orbit for good

resolution. Additionally, a radiometric system mtlst be able to repoint accurately its beam

reasonably quickly to achieve the required tracking performance and scanning speed to minimize

revisit time. This beam repointing speed requirement presents a further complication because

the large antennas which are required generally cannot be slewed fast enough without disturbing

both the antenna structure and its shared spacecraft bus. From 1987 through 1993 the Satellite

Communications Group at Virginia Tech worked with the Antenna and Microwave Research

Branch at NASA Langley Research Center to develop reflector antenna systems which achieve
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high gains, and therefore narrow beam widths, while being capable of wide angle beam scanning

without main reflector motion.

1.2 Project Motivation

The original science objectives of tile Mission to Planet Earth required a 100-meter class

reflector antenna capable of operating with high beam efflciencies over a frequency range of 10

to 60 GHz to achieve the necessary resolution [2]. Revisions to the intended geophysical science

applications of the radiometric experiment [3] and studies of the size/complexity characteristics

of large space antennas [4] have since reduced the antenna size requirement to a 25 meter

diameter projected aperture. This antenna size will produce a resolution of 20 km at the sub-

satellite point at 18 GHz and still allow the spacecraft system to be launched by a single STS

mission [4].

As mentioned above, beam scanning a reflector antenna of this size by main reflector

slewing is impractical due to mechanical considerations. To avoid main reflector mechanical

motion, beam scanning must be achieved by a combination of feed and/or sub-optic motions.

Purely electrical beam scanning for a high gain, multi-band, wide scanning reflector antenna has

been ruled out because of the immensely complex feed array which would be needed [5]. Also,

scanning schemes which use feed motion are not feasible because even a single feed per band

radiometer is quite heavy and extremely gain sensitive and so should not be moved. Because of

these restrictions, the antenna must be capable of wide angle beam scanning by sub-optics

motion. The simplest reflector antenna configurations which are capable of beam scanning by

sub-optics motion are the dual reflector Cassegrain and Gregorian systems. From geometrical

optics reflector antenna theory, comparable performing Cassegrain and Gregorian systems can be

synthesized. Cassegrain reflector antenna systems are more compact than an equivalent
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Gregorian system because the subreflector is located between the main reflector and the focal

point in a Cassegrain system but beyond the focal point in a Gregorian system. For this reason,

this work focuses on Cassegrain reflector antenna systems. Tile need for an offset main reflector

is the final geometry restriction imposed by the mission requirements. This requirement is

generated by the high beam efficiency (90%) needed for accurate radiometric n_easurements [3].

The desired characteristics of this wide scanning, high gain reflector system are shown in Table

1.2-1.

Krichevsky and DiFonzo [6] developed a method for designing offset Cassegrain reflector

antenna systems for use on multi-beam communications satellites. Unfortunately, as shown in

Section 3.3, their configuration scans by feed motion and does not place any limits on reflector

size. In 1990, Peter Foldes proposed the Type 6 reflector antenna as a compromise system to

meet these requirements [7]. This reflector antenna beam scans by tilting its small subreflector.

Analysis of this system at Virginia Tech using the GRASP7 reflector antenna physical optics

package suggested that its scan range would become extremely limited at higher operating

frequencies as shown in Section 3.4. Virginia Tech began research into the scanning properties

and optimum scanning of offset Cassegrain reflector antennas in cooperation with the Antenna

and Microwave Research Branch at NASA Langley Research Center. This thesis presents the

results of that research.

Introduction
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Table 1.2-1. Required characteristics of a wide scanning, high gain. geostationary
radiometric reflector antenna system

Operating frequency

Maximum half-power beam width (HPBW)

Beam efficiency (BE)

Scan range

Scanning mechanism

Aperture efficiency (_ap)

Main reflector diameter (DM)

Areal efficiency ( DM---2

DM 2 + Ds2/

20 - 60 GHz

0.04"

> 90%

.i. 7°

suboptic motion or

simple array feed

> 70%

<25m.

as high as possible
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Chapter 2

REFLECTOR ANTENNA SYSTEM GEOMETRY

The electrical properties of reflector antenna systems depend primarily on the ratio of

the focal length of the reflector to its diameter. This quantity, F/D, determines the level of edge

taper due to geometrical effects, the required directivity of the feed antenna, and, for offset

systems, the cross-polarization level. Further, of particular interest to this study of scan

behavior, the scanning performance of reflector antenna systems degrades as F/D decreases for a

given aperture size. F/D cannot be decreased to much less than unity becallse then the surface

area of the reflector increases at a much greater rate than the projected aperture area. Since the

feed must be placed at the focal point and supported by a boom, the constraints on the

minimum F/D value require a deep structure which increases the mechanical complexity and

weight. The mechanical depth of a reflector antenna system can be reduced by using a

secondary reflector to form an image of the feed at the focal point of the main reflector

paraboloidal surface. In addition, the use of folded optics allows the feed to be located in a

more convenient position.

The two classical types of dual reflector antenna systems are the Gregorian system and

the Cassegrain system. In a Gregorian reflector antenna system, an ellipsoidal subreflector is

mounted farther from the main reflector surface than the focal point of the main reflector

paraboloid. Although this method allows a longer electrical focal length for a given main

reflector paraboloid, the system is still quite deep since the subreflector must be mounted

Reflector Antenna System Geometry 6



beyond the focal point. The focal length, and therefore F/D of tile main reflector surface, of this

type of system is still limited by the requirement of mounting the subreflector beyond tile focal

point. The Cassegrain reflector antenna system, which is tile system of interest here, consists of

a hyperboloidal subreflector mounted between the main reflector surface and the focal point of

the main reflector paraboloid. In this system, the length of tile reflector antenna system is

reduced compared to the Gregorian system since tile subreflector is mounted closer to the main

reflector surface. This difference allows the main reflector surface of a Cassegrain reflector

antenna system to have a higher F/D value but still allows tile antenna to be built with a

relatively short support structure for the subreflector.

This chapter explains how the Cassegrain reflector antenna system evolves from the

prime-focus paraboloidal reflector antenna system. The concept of the equivalent prime-focus

paraboloid is introduced for the Cassegrain reflector antenna system. A method for determining

the geometry of an offset Cassegrain reflector antenna system which has an axi-symmetric

equivalent paraboloid is given. Finally, the test case which will be studied is specified.

2.1 The Prime-Focus Paraboloid Reflector Antenna System

The prime-focus paraboloid reflector antenna system consists of a paraboloidal main

reflector and a feed located at the focal point of the main reflector. The equation that defines

the main reflector surface, as shown in Figure 2.1-1, is

XM2 + yM 2

ZM -- 4 F M (2.1-1)

where

F M = focal length of the paraboloid.

The focal point of the paraboloid is located on the z-axis and the vertex of the paraboloid is

located at the origin. In general, the physical reflector is a section of the parent paraboloid and

Reflector Antenna System Geometry
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Main reflector (M)
Aperture plane (A)

XM, YM, zM} 1_1

_>

Focal point (FM) z

Figure 2.1-1. Prime-focus paraboloidal reflector antenna system geometry.
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can be either axi-symmetric or offset. In the case that tile physical reflector is offset, the feed is

located at the focal point on the z-axis but is tilted to evenly illuminate the physical reflector.

A paraboloidal main reflector is used because a spherical wave leaving a point source located at

the focal point will be transformed into a planar wavefront exiting the aperture of the antenna.

This requirement is equivalent, in a geometrical optics (GO) sense, to the requirement that all

rays traced from the feed point exit the aperture of the antenna system perpendicular to the

aperture plane after reflection from the paraboloidal surface [1]. The correct main reflector

shape is verified by substituting the incident and reflected ray unit vectors. F 2 and Fl, at the

main reflector and the unit normal of tile surface, fi'M, into Snell's law.

For the prime-focus reflector antenna system shown in Figure 2.1-1, a ray from the feed

point, {0, 0, FM} , to any point on the reflector surface, {XM, YM, ZM}, is

r'2 = { XM X', YM Y" (ZM" FM) z" }. (2.1-2)

Since the length of this ray is

IF2I = V/XM2 + yM2 + (ZM'FM)2 ' (2.1-3)

the unit vector of a ray from the feed point to any point on the reflector surface is

F2 =(V/xM2 + yM2 + (ZM'FM)2 )-1{ XMX, YMY', (ZM-FM)z" }. (2.1-4)

The unit vector of a ray exiting the aperture in tile z-direction is

t'l = {0, 0, 1}. (2.1-5)

The required surface shape can be verified by substituting (2.1-4) and (2.1-5) into Snell's

law. Snell's law, expressed in vector notation, is

Fl -- F2" 2 (F 2 .i_ M )_M (2.1-6)

where

n'M = the inward unit normal of the main reflector paraboloid at tile point of reflection.

An inward normal vector at the paraboloidal main reflector surface is

Reflector Antenna System Geometry
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f-OqXM^ -t_yM^ _Zls.|AI

_M =I--_Cx,--_-Y,-_:_f

For the paraboloidalsurfacegiven by (2.I-I)

-OXM_ - xM
-b-/-- _'f_M
-OYM_ " YM

Oz --

(:.1-7)

(2.1-8c)

(2.1-8c)

(2.1-8c)

so

Since the lengthof thisnormal vectoris

_/XM 2 + yM 2 + 4FM 2

2F M

the unit vectornormal to the paraboloidalsurfaceis

.,-- )-Is_ (v/xM_+yM_+4FM_ 1-_M_,-y_, 2FM_}.

(2.1-9)

(2.1-10)

(2.1-11)

Substituting the incident ray unit vector (2.1-4), the reflected ray unit vector (2.1-5), and the

inward normal unit vector at the point of reflection (2.1-11) into Snell's law (2.1-6) and

expressing tile result as equations for each of the x, y, z components gives:

xM --xM
0 = . - 2 (_'2"ffM) (2.1-12a)

_/xM,+_ +<z_-F_I_ _/xM_+y_ +4r_
0 = YM 2 (F 2.ffM) - YM (2.1-12b)

_/XM 2 + yM 2 + (ZM--FM) 2 _/XM 2 + yM 2 + 4FM 2

I = ( FM" zM ) - 2 ( r'2" fi'M ) 2 F M (2.1-12c)

Jx_'+_ + (zM-FMI_ _/x_2+_ +4F_
where

_- )-1

[_ XM2 _ yM _ + 2FM(ZM--FM) ]. (2.1-13)

Equation (2.1-12) is simplified by manipulating the radical in the denominator of the F 2 terms

into the form of the n'M terms. Expanding the radical in _'2 and substituting (2.1-1) for z M into

RelIector Antenna System Geometry 10



(.'2.1-12) leads to

_/XM2+YM_+(ZM'FM) _= ×M_+YM2+_, 4F M -FM (2.b14)

= _1 il 6 FM_ XMI+ 16 FM 2 YM2+(XM2+VM2-4 FM2)2. (2.1-15)

: 1 V/16FM2XM _ + 16 + + "2FM2)'M 2 XM 4 XM_).M _

8 FM 2- XM 2 - 8FM2YM 2 + YM 4 + 16FM 4 (2.1-16)

_ 1 _/SFM2XM 2 + 8 + + 2-- _ FM2yM 2 XM 4 2xM2YM

+ YM 4 + 16FM 4 (2.1-17)

,/(= _ XM 2 4- yM 2 4- 4FM2) 2 (2.1-18)

which is the form of the radical in the fi" terms of (2.1-12). Substituting (2.1-18) into (2.1-12)

and (2.1-13) gives

__
4 F M x M

XM 2 + yM 2 4- 4FM 2

._
4 F M YM

XM 2 4- yM 2 4- 4 FM 2

1 ""
4 F M ( F M- ZM )

XM 2 4- yM 2 + 4 FM 2

-2 (ri._) -XM (2.1-19a)
_/XM 2+yM 2+4FM 2

- 2 (Fi._") - YM (2.1-19b)
/XM 2 4- yM 2 4- 4 FM 2

') F M
(2.1-19c)

CXM 4- yM 2 4- 4 FM 2

where

- XM2 " yM2 4- 2 FM(ZM" FM) (2.1-20)

Defining

= XM 2 4- yM 2 + 4 FM 2 (2.1-21)

and using _ in (2.1-19) with (2.1-20), yields the following equations that correspond to the

Cartesian component equations of (2.1-12)

Reflector Ante_u_sSystem Geometry !1



4FMXM 8FM [_ (2.1-22a)
0-- ( -i- (2 [ XM2- yM2-t- 2FM(ZM-FM)]XM

8FM [ ' (2.1-22a)
0 --_4FMYM + _ [-XM 2- YM 2 q-2FM(ZM'FM)] YM

4 F M (zM- FM) + 8F M (zM .FM)] .)FM 'I= c -_-[-XM2-yM2+ 2rM - (2.1-22a)

Substituting(2.1-I)into the bracketed term common to (2.1-22a),(2.1-22b),and (2.1-22c)gives

[_ XM2_YM2+2FM(ZM.FM)] -- [_ XM2 _ yM2+ 2,MZM.2FM 2] (2.1-23)

=I[.2XM2_2YM2+XM 2 %yM2-4FM 2] (2.1-24)

-1 +yM + rM"]-2

The satisfaction of the x and y components of (2.1-12) by the paraboloidai main reflector shape

is verified by substituting (2.1-25) back into (2.1-2'2)

0 = .4F M x M 4 F M xM (2.1-26a)
( (

0 = 4 F M YM _ 4 F M YM (2.1-26b)
( (

8 FM 2 (2.1-26c)1 4F M(z M-FM) +--
= ( (

The satisfaction of the z component of (2.1-12), shown in (2.1-26c), is verified by substituting

(2.1-1) into (2.1-26c). This substitution and simplification gives

4 FM "z F " 4 FM :XM 2 & yM 2 1
I=--_--(M+ M_=-'-_--_ 4FM +FM I

_ 4FM :XM2 + yM2 + 4FM2_

---_-\ _r,; ]=_.
The equalities

(2.1-27)

(2.1-28)

of (2.1-26a), (2.1-26b}, and (2.1-28), derived by enforcing Snell's law at the

reflector surface, prove that the paraboloid focuses tile rays from a point source feed at the focal

point to infinity as a prime-focus reflector antenna system. Although this method of GO

raytracing can be used for synthesis, it is desirable to have a simpler synthesis method that does

not require taking derivatives at the surface.

Re/lector Antenna System Geometry 12



2.2 TheLcvi-CivitaTheorem

The properreflectorsurface shape for a prime-focus antenna system can also be

determined by imposing an equal path length constraint on each ray traced from a feed point at

the focus to the reflector surface and leaving the reflector antenna system in a direction

perpendicular to the aperture plane. The Levi-Civita theorem [1] states that, for a set of rays

which exit a single reflector antenna system mutually parallel and strike a reference plane, the

following two conditions are equivalent:

(1) The path length of every ray from the source to the reference plane must be equal.

(2) Shell's law is satisfied at the reflector surface.

Since the rays in a focused prime-focus reflector system exit the system mutually parallel,

present a planar phase front in the aperture, and undergo a single reflection in the antenna

system, this theorem can be used to determine the proper shape for its reflector surface [1].

The reflector shape of a prime-focus paraboloidal reflector antenna system can now be

found by determining the path lengths for rays traced from the feed point to tile aperture after

reflection from the reflector surface. The reflector is assumed to have a feed point at z -- F on

the z-axis and to have a parent stirface which passes through the coordinate system origin as

shown in Figure 2.1.1. As in Section 2.1, where the shape was verified by enforcing Shell's law

at the reflector surface, the desired direction of propagation is along the z-axis. Unlike in

Section 2.1, the correct reflector shape will be found directly rather than verified. The length of

any ray from any point on the reflector surface to the aperture plane is

zA-zM (2.2-I)
where

zA = the location of a point in the aperture plane along the z-axis

AII_ System Geometry 13



{ XM, YM, ZM } = a point on the reflector surface.

As shown in Figure 2.1-1, the distance from tile point feed at the focus, {0, 0, FM}, to any point

on the reflector surface is

1_21= x/xM_+ y2 + (__F_)2 (2.2-2)

To satisfy condition (1) of the Levi-Civita theorem

I_,1+1_1-_-_M+ V/xM2+ YM_+/,_M-F_,,,)_= L, (2.2-a)

where

Lp -- the constant path length for all rays.

Rewriting (2.2-3) and squaring both sides

_/XM 2 -6 yM 2 -6 (zM- FM) 2 = Lp - zA -6 zM. (2.2-4)

XM 2 -6 yM 2 -6 (zM- FM) 2 = (Lp - zA q- ZM) 2. (2.2-5)

After expanding the squared terms, (2.2-5) results in

XM 2 -6 yM 2 -6 ZM 2 - 2FMZ M -6 FM 2 ----Lp 2 - 2Lpz A -6 2Lpz M -6 ZA 2 - 2ZAZ M -6 ZM2(2.2-6)

Evaluating (2.2-5) at the coordinate origin (0, 0, 0) gives

Lp - z A -6 F M. (2.2-7)

Substituting this expression for the constant Lp into (2.2-6) gives

XM 2-6 yM 2-6 ZM2- 2F Mz M-6 FM 2 = ZA 2-6 2F Mz A-6 FM 2- 2ZA 2- 2F Mz A-6 2z Az M -6

2 F M zM -6 ZA 2 - 2 zA zM -6 ZM 2. (2.2-8)

After simplification, (2.2-8) becomes

XM 2 -6 yM 2

4 F M : zM" (2.2-9)

This is the equation for a paraboloid as given by (2.1-I). This establishes the paraboloid as the

proper shape for the reflector of a prime-focus reflector antenna system and shows that this

shape can be developed from either Shell's law or tile equal path length constraint. The

simplicity of the equal path length condition compared to the verification using Snell's law

presented in Section 2.1 is striking and is of great value. It suggests that the equal path length

Reflector AnteamA System Geometry 14



should be used when examining the more complex dual reflector antenna system.

2.3 The Canonical Cassegrain Reflector Antenna System

The canonical Cassegrain reflector antenna system consists of a paraboloidal main

reflector surface, a hyperbo]oidal subreflector surface mounted with one of its focal points

coinciding with the focal point of the main reflector surface shape, and a feed located at the

second focal point of the hyperboloidal subreflector. The equation which defines tile paraboloid

of revolution that forms the main reflector surface, as shown in Figure 2.3-1, is given by (2.1-1).

The general second order equation which defines the subreflector surface, as shown in Figure 2.3-

1, is

Axs 2+ BxsY S+ Cy 2
s + D xs + E ys+ F= Gzs 2+ Hz s+ Ix Sz S + JYszs

where
(2.3-1)

A = 4(fl 2 - 02)

B = 8B7

C = 4(72 - 02)

D = 4(f10 + 2t_2xf2)

E = 4(70 + 2ct2yf2 )

o = ¢(xfl-xf2)2 + (YfI'YI'z)2 + (Zfl'Zf2) 2

F = 02 - 4t_2(xf22 + yf22 + f22)

c, = 2 _

H =-4(60+ 2c_2zf2)

I = -8/]6

J =-83'6

= xt,) = (y yt,)
2 - .

0 = Xfl 2 + yfl 2 + zf 1 _ xf22 yf22 zf22_ 02 ,

fl, t'2 = the two focal points of the hyperboloid,

-- (Zf2-Zfl )

e = the eccentricity of the hyperboloid.

The details of the derivation of this equation have been omitted due to their length. In the

Cassegrain reflector antenna system, the hyperboloidal subreflector surface is used because the

Reflector Aa_azuL Syjt_m Geometry
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x

Main reflector (M) Aperture plane (A)

_ {XA, YA, ZA}

Y

Subreflector (S)

XS_ YS, ZS}

fl

Focal point (FM)

_>

z

f2

Figure 2.3-1. Cassegrain reflector antenna system geometry.

Reflector Anteama System Geometry 16



focal points of the hyperboloid are conjugate points. That is, an image of the feed placed at the

second focal point of the hyperboloid is formed at the first focal point of the hyperboloid which

is located at the focal point of the paraboloidal main reflector surface. The subreflector surface

is chosen to be on the branch of the hyperboloid which is closer to the focal point of the main

reflector. As with the prime-focus paraboloidal reflector antenna system, in general, the

Cassegrain reflector antenna system can be either axi-symmetric or offset. In either case, the

physical main reflector and subreflector are sections of the surface of the parent paraboloid and

hyperboioid, respectively.

The imaging property of the hyperboloidal subreflector can be simply shown through

the use of an extension of the Levi-Civita theorem discussed in Section 2.2. Xianzhong [3] has

extended the Levi-Civita theorem to include arbitrary focused dual reflector antenna systems.

Xianzhong starts by assuming a set of rays which emanate from a point source at the focal point

and reflect through the dual reflector system shown in Figure 2.3-2 [3]. The rays exit the

aperture mutnally parallel and strike a perpendicular reference plane. Xianzhong considers three

restrictions on the set of rays:

(1) The path length of every ray from the source to tile reference plane must be equal.

(2) Snell's law is satisfied at the main reflector surface.

(3) Snell's law is satisfied at the subreflector surface.

If the rays satisfy any two of these conditions, then the remai,fing restriction is satisfied

automatically [3]. The proof uses an arbitrary dual reflector system including an aperture plane,

A, a main reflector, M, and a subreflector, S. The equations for these surfaces then are [3]

zs = Zs(Xs,ys) (2.3-2)

ZM = ZM(XM' YM) (2.3-3)

= z. ).
where x, y, and z are the coordinates of the intersection of the ray with the surface indicated by
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Figure 2.3-2. General doubly reflected ray geometry as used by Xianzhong [3].



the subscript and za is the z-coordinate of the intersection of the ray with the aperture plane.

The z-axis is taken to be normal to the reference plane and the rays which strike the plane are

parallel to the z-axis [3]. The unit vectors F3, F2, and F 1 are the unit vectors of one of the rays

which is reflected through the system _ indicated in Figure '2.3-'2 [3]. If Snell's law is enforced

at the subreflector and main reflector, then

(Ozs_ (cos., cosB,)
OXs)= (cosa. cos.z) (2.3-,_a)

(azs_ (cos_y-cos_,)
0ys} = (cos& cos.z) (2.3-Sb)

at the subreflector and

(azM_ cosa,
0XM]= (1--_-_;#.)

(az._ cosa_
ayM] = (l- cos.z) (2.3-6b)

at the main reflector [3]. Tile constant path length through the system, Lp, is

Lp = V/Xs 2 + ys 2 + zs 2 + V/(XM_Xs)2 + (yM_Ys)2 + (ZM_ZS)2 + (za_zM). (2.3-7)

Xianzhong solves the system by taking the partial derivatives of (2.3-7) considering

either x M and YM or x s and YS to be tile independent variables ill the system. If tile main

reflector parameters, x M and Ys, are considered independent, then

0x.] - t,0-z_)[(o..._co.B./-(cosa.-cos..)(a.,_1\Oxs]J

( 0ys [
+ _,_-S-_] L'(cos,y- cos6,). (cosa.

+[cos_x (_- cosBzl/°'M_l
_.OYM]J

+

(ax_ h[(cos.,-cosa,)_(cosa,OyM] t0xsJJ

Oz s

(2.3-6a)

(2.3-8a)
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If the subreflector parameters, x S and Ys, are considered independent, then

/OZs`11
{OLp_ [(co_,_cos_,)_(cos_.cos_,}t0xs/jtgl =

foxM_[ (Oz.`11+ t,-_s ) cosn,- (_- cosn,)tOxuj j

(OxM_[cose.(__cos_,)(°xM_l+ _, OXs ] t/gYM]J

fo:s`1]
[OLp] [(cos%.cosG).(cosn.cos,,,,)tOys) 1

(ax_`1[cosnx- (+ toys)

+ t-_-U/(oy_'/ire°s°,- (

__cos,_,)(a'_`1]
to,,M/J

1- coS/Tz) tOYm,]j.

(2.3-8b)

(2.3-9a)

(2.3-9b)

If the Snell's law requirements, (2.3-5) and (2.3-6), are satisfied and substituted into (2.3-9),

then

OXs] : 0 (2.3-10a)

Oys]- 0 (2.3-I0b)

so the minimum path length constraint of Fermat's principle is satisfied and the first restriction

that Xianzhong considers is proven [3]. Alternately, substituting (2.3-5) and (2.3-6) into (2.3-8)

gives

OXM] = 0 (2.3-I la)

OyM/= 0. (2.3-1 lb)

The other possible combinations of imposed and automatically satisfied restrictions are also

considered by Xianzhong and are stated to be correct [3].

This extension of the Levi-Civita theorem rrlakes the analysis or synthesis of the

geometry of the canonical Cassegrain reflector antenna system significantly simpler. The Levi-

Reflector Antem_ Syi_m Geometry 20



Civita theorem and the analysis of Section "2.'2or tile analysis of Section "2.1 show that Shell's

Law is satisfied at the reflector surface for any ray in tile focused prime-focus paraboloidal

reflector antenna system. Because the main reflector surface in a canonical Cassegrain reflector

antenna system is paraboloidal and the hyperboloidal subreflector produces a spherical phase

front centered on its first focus when illuminated by a point source at its second focus, the

results of the preceding analysis of the prime-focus paraboloidal reflector all,enna system call be

used to assure the satisfaction of condition (2) of the Xianzhong extension of the L ....
ev_-flvtta

theorem for dual reflector antenna systems.

Condition (1) of this extension can be shown to be satisfied for the hyperboloidal

subreflector because tile defining characteristic of the hyperbola is that the difference in tile

distances from any point on the hyperbola to the loci is constant. A distinction is made

between the path length of a ray in the prime focus system, Lppf., and the path length of a ray

in the Cassegrain system, Lpcass. ' through (2.3-15). For the hyperbola shown in Figure 2.3-1 the

defining characteristic can be written as

dl,2 - dfl = -_

where (2.3-12)

dfl, dr2 = the distances from fl and f'2 to a point on the subreflector,

fl, f2 = the focal points of the hyperboloid,

2a = the distance between the foci of the hyperbola,

e = the eccentricity of the hyperbola.

From (2.2-3)

Lppf.

where
(2.3-13)

Lppf. = the path length of any ray in tile prime focus antenna system which is reflected to
the feed point.

Reflector Antenna Syatem Geometry
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A hyperboloidalsubreflector located in tile reflector system with one focus at the focus of the

main reflector paraboloid and the other focus at the desired feed point will reduce the length of

any ray reflected from the hyperboloidal surface by the distance dfl, the distance between the

point on the subreflector and focal point fl, and increase the length of ally ray reflected from the

hyperboloidal surface by the distance dr2, the distance between the point on the subreflector and

focal point f2, as shown in Figure 2.3-1. Therefore, the length of any ray which reflects through

the antenna system is

2a (2.3-14)
I 11+1 21÷d 2-d. = Lpc_.- Lppf. + --_-.

Since the analysis of Section 2.2 shows that Lppf., the path length of any ray in the prime-focus

reflector antenna system, is constant, (2.3-14) shows that Lpca.,s" is constant from the definition

of the hyperbola. Thus, condition (1) of the Xianzhong extension of the Levi-Civita theorem is

satisfied. Condition (3) is also now known to be satisfied since all of the other conditions have

been shown to be satisfied. Avoiding direct application of Snell's law at the subreflector surface

through the use of this theorem is advantageous it is more difficult than the calculation of the

total path length.

2.4 The Equivalent Paraboloid

The equivalent paraboloid of a dual reflector antenna system is a mathematically

constructed prime-focus paraboloidal reflector antenna which produces the same aperture field

distribution as the dual reflector antenna system. The equivalent paraboloid has been found to

be an accurate predictor of the electromagnetic performance of the modeled dual reflector

antenna system but with the advantage of requiring far less computational effort [4]. Rusch et

al. [4] developed a general definition of the equivalent paraboloid for offset Cassegrain and

Gregorian dual reflector antenna systems with arbitrary aperture shape. The development
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presented here will concentrate on the case of tile canonical Cassegrain reflector antenna system.

The notation of Rusch et aI. [4] will be used through the end of this chapter to maintain

consistency with the referenced article.

Figure 2.4-1 shows the geometry and definition of variables which Rusch et al. [4] use in

the derivation of the general equation of the equivalent paraboloid of a Cassegrain reflector

system. Rusch et al. [4] use four Cartesian coordinate systems: { xp, yp, Zp } and { Xs, Ys, Zs }

which have their origin at the focal point of the main reflector surface and { xf, yf, zf} and { xa,

y/_, z/_} which have their origin at the second focal point of the subreflector surface. Each

coordinate system also has an associated spherical coordinate system. The main reflector surface

is paraboloidal and tile subreflector surface is hyperboloidal. The Inain reflector surface is given

by

2F

PP = 1 + cOS0p (2.4-1)

where

F = the focal length of the paraboloidal main reflector surface.

The subreflector is defined by

2c
Pf" Ps = "E-

where
(2.4-2)

2c = the interfocal distance of the hyperboloid,

e = the eccentricity of the hyperboloid.

The formulas

c(e_- 1)
Pf = e(ecos0 a- 1)

0__ .
tan-_- I__ it f o,]-,. [tan -] ,1

derived from (2.4-2), and the identity

_-e, f e,1-,
tan..--Z--=ttan ]

(2.4-3)

(2.4-4)

(2.4-5)
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Figure 2.4-1. Geometry definition of the general Cassegrain reflector antenna for the
Rusch et al. development of the equivalent paraboloid [4].
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are useful in determining the geometrical optics aperture field due to a point source located at

the second focus of the hyperboloidal subreflector.

Rusch et al. [4] now find the aperture field at a point A due to a spherical wave

emanating from the feed point. The magnitude of this field at a point ill the aperture is given

by

EA= E(0f,mr) !2.4-6)

where

E(0f, mr) = the field pattern of the feed expressed in tile spherical feed coordinate system.

Ps
Rusch et al. [4] develop the _ amplitude term as a function of 0f and mr using the formulas

cOSOp = cos0 s cosB - sin 0 s cOSCs sin B (2.4-7)

Pf
sin0 s = _ sin0_ (2.4-8)

cos0 s- pfc°s00- 2c
v, (2.4-9)

and the identities

sin0 B cos_ = sin0f cos_f cos_ + cosOf sin_

cos00 = -sin 0f cos_bf sino + cos0f coso.

After substitution, they show that

= 2-_ 1- epf + sin0f cos_bf sin(_ + fl). cosOf cos(t_ + fl) .

Since the angle _ has not been used yet, it can be chosen arbitrarily.

that the zf-axis is aligned with the axis of the equivalent paraboloid.

(2.4-12)

Rusch et al. [4] set _ so

This selection causes (2.4-

(2.4-13)

(2.4-14)

12) to reduce to

Ps 1 + cos0f

PfPp 2 Feq

where

le -I I
Feq= F

(e 2 + 1)- 2ecosl3"

Reflector Antenna System Geometry
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So (2.4-6) now has tile form

E(0f, _r) (2.4-15)
EA -- Peq

which is the aperture field distribution of a prime-focus paraboloidal reflector antenna system

with a focal length of Feq.

angle, _:

(e 2- 1) sin_3

sin_ = (e 2 + 1)- 2ecos/3

(e 2 + 1)cosB- 2e

cosa = (e 2 + 1)- 2ecos/3"

These equations can be combined to form

(e2- 1)sin0
tan (e2+l)cosB-2e

or

Finally, (2.4-12) can be solved to determine the required feed tilt

(2.4-16)

(2.4-17)

(2.4-18)

a e + 1 tan _ (2.4-19)
tan _ - e- 1 5"

Either (2.4-18) or (2.4-19) can be used to find the required feed tilt for an equivalent paraboloid

of focal length Feq which will model the Cassegrain reflector antenna system.

Rusch et al. [4] caution that this model is based on geometrical optics principles applied

to a focused reflector antenna system. Although defocusing and diffraction effects are ignored,

the equivalent paraboloid should provide a reasonably accurate prediction of the near-boresight

aperture and radiated fields of the focused dual reflector system it models. In order to minimize

these effects, Rusch et al. [4] recommend that the equivalent paraboloid model not be applied to

systems which have a subreflector smaller than approximately l0 wavelengths or an edge

illumination taper of less than 10 dB on the subreflector.

To demonstrate the accuracy of the equivalent paraboloid as a model of a focused dual

reflector system which satisfies the restrictions of (2.4-14) and (2.4-16) through (2.4-19), B.usch

et al. [4] considered the system shown in Figure 2.4-2. The far-field electromagnetic
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Figure 2.4-2. Geometry definition of a Cassegrain reflector antenna system with a

circular aperture as used by Rusch et al. [4].
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characteristics of this system and its equivalent paraboloid were calculated using physical

optics/surface integration. The characteristics of this system are shown in Table 2.4-1. Figure

2.4-3 [4] shows the principal and 45" plane far-field radiation patterns for the Cassegrain system

and its equivalent paraboloid. The equivalent paraboloid has a gain aboat 0.5 dB greater than

the Cassegrain system but otherwise predicts the co-polarized antenna pattern of the Cassegrain

system fairly accurately down to as low as 30 dB below the peak. Tile accuracy of the cross-

polarization level prediction by the equivalent paraboloid is not discussed by Rusch et al. [4].

Rusch et al. [4] attribute the differences between the co-polarized patterns of the systems and

the cross-polarized component of the Cassegrain system to diffraction effects and spillover at the

subreflector surface.

Because the equivalent paraboloid of a dual reflector antenna system is derived under

the assumption of a focused system, the equivalent paraboloid is a poor predictor of scan

performance. Figure 2.4-4 [4] shows how the accuracy of the performance of the Cassegrain

system predicted from the equivalent paraboloid degrades with beam scanning.

2.5 The Minimum Crom-Polarization/Spillover Condition for Offset Dual ltcflcctor Antenna

Systems

The second reflector surface in a dual reflector antenna affords tile antenna designer

additional degrees of freedom in the synthesis of the antenna system. This can be of value

during antenna synthesis to improve the performance of the antenna system. For instance,

because the main reflector and subreflector can be shaped in a dual reflector system, the designer

can develop antenna systems ranging from a spherical mai,l reflector with a phase correcting

subreflector for wide-scanning to gain-optimized systems where the subreflector and main

reflector are shaped to give a desired aperture distribution.

suggests a fundamental configuration selection possibility.

Reflector Antenna System Geometry
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Table2.4-1.Reflectorgeometryused by Rusch et al. [4] to verify tile accuracy of the equivalent
paraboloid far-field pattern predictions.

Main reflector focal length (F)

Main reflector diameter (D)

Main reflector offset height (do)

Feed tilt angle (c_)

Subreflector axis tilt angle (8)

Subreflector eccentricity (e)

Subreflector interfocal distance (2c)

Equivalent paraboloid focal length (Feq)

Feed type

62.5A

100A

75A

26.64"

9"

1.996

20.41 A

179.13A

circularly symmetric

cos q with 10 dB edge
illumination
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Figure 2.4-3. Equivalent paraboioid physical optics far-field pattern analysis results for

the Rusch et al. system of Table 2.4-1. Principal and 45" plane pattern cuts

for tile Cassegrain reflector antenna system and its equivalent

paraboioid [4].
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Equivalent parabeloid physical el)tics analysis results for the Rusch et al.

system of Table 2.4-1. Pattern cuts in the plane of scan for a Cassegrain

reflector antenna system and its equivalent paraboloid scanned in the plane
of offset [4].
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dualreflectorantennasystem with a circular aperture is axi-symmetric, the cross polarized field

component radiated by the antenna due to geometrical offset effects and tile antenna eMciency

reduction to spillover effects will be simultaneously minimized [4].

Rusch et al. [4] developed a technique based on tile equivalent paraboloid concept for

simultaneously minimizing feed power spillover and tile cross-polarized field component. Figure

2.4-2 [4] shows the geometry used in this development. The most significant change from the

geometry used in the development of the equivalent paraboloid is the introduction of Deq, the

diameter of the equivalent paraboloid, and doeq, tile offset distance of the equivalent paraboloid.

Because the development of the equivalent paraboloid, as presented above, is intended to be

valid for any ray which reflects from tile feed point through tile dual reflector system, the

equivalent paraboloid is shown to exist but its dimensions are not determined. Specializing this

development to dual reflector systems which have circular apertures, allowed Rusch et al. [4] to

show that D - Deq and also find d%q, the offset height of the equivalent paraboloid.

Rusch et al. [4] use (2.4-4) , in the y = 0 plane, to write

By expanding the tangent terms and using (2.4-19), they showed that

0f e 2 +1-2e cos/_/tanO_ -1 2e
tan _= [e 2- 1[ _) "

siu_.

Rusch et al. [4] used clockwise angles as negative and use 0Ueq and 0le q

between the upper and lower equivalent paraboloid edges and tile zf-axis.

lead to:

doeq- Feq tan _--_q÷ tan

(2.5-1)

(2.5-2)

to represent the angle

These conditions

(2.5-3)

(2.5-4)
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Substituting (2.4-14) and (2.5-2) into (2.5-3) and (2.5-4) gives

Deq= 2F tan_- - tan = D

and

doeq

(2.5-5)

2 e sin _= do- 2F e2 + 1 - 2e cos/_] (2.5-6)

where 01 and 0u are the angles between tile lower and upper edges of tile physical paraboloid of

the Cassegrain system and the z-axis as shown in Figure "2.4-'2 [4]. Setting do= 0 allows the

solution of (2.5-6) for the required/3 for an axi-symmetric equivalent paraboloid:

0c 2 e sin/3

tan-_- = e2 + 1 - 2e cos_ (2.5-7)

where the angle 0c, as shown in Figure 2.4-2 [4], is the angle between the center of the aperture

projected onto the main reflector surface and the -z-axis. In general, radiated cross-polarized

fields can be minimized by aligning the feed along the axis of the equivalent paraboloid [4]. The

Rusch condition, (2.5-7), forces the axis of the equivalent paraboloid to align with the angular

center of the subreflector. This alignment will simultaneously minimize the radiated cross-

polarized field component and the spillover [4] and will give the offset Cassegrain reflector

antenna system unscanned characteristics similar to those of the axi-symmetric prime-focus

parabo]oidal reflector antenna system.
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Chapter 3

BEAM SCANNING IN CASSEGRAIN REFLECTOR ANTENNA SYSTEMS

The radiation characteristics of a Cassegrain reflector antenna system are degraded

when its main beam is scanned away from the focused boresight direction. Tile gain of the

antenna and the symmetry of the pattern are reduced while the beamwidth and the sidelobe

levels are increased. The factors which lead to this degradation mr:st be minimized to achieve

good performance during even moderate beam scanning. This chapter identifies the major

factors which contribute to the degradation of antenna performance during beam scanning and

presents two previotm methods of beam scanning for the offset Cassegrain reflector antenna

system. This material offers insight into the beam scanning properties of tile offset Cassegrain

reflector antenna system and facilitates the development of the simplified error functionals in

Chapter 5.

3.1 Principles of Beam Scanning

Beam scanning in any antenna system reqldres a tilted aperture phase snrface [1]. This

phase taper can be achieved either mechanically by moving tile antenna feed system or

electrically by imposing a phase taper with an array feed. This work is intended to determine

the optimal mechanical motions for beam scanning in an offset Cassegrain reflector antenna

system.

To create an asymmetric phase distribution across the aperture of a reflector antenna,

_ in _ _ec_or Anl_DuzaSyslm_ms



the antennasystem feed phase center mu._t be moved laterally away fronl tile unscanned feed

point. In the offset Cassegrain reflector antenna system this movement can be achieved either

by physically moving the feed or by repositioning the subreflector to create a virtual feed

movement. While any asymmetric aperture phase taper is sufficient for beam scanning, the

formation of a clean scanned beam requires that two sources of beam degradation be minimized;

these are discussed in the remainder of this section.

3.1.1 Illumination Error Effects

Aperture illumination amplitude error is a major source of antenna performance

degradation during beam scanning. In an offset Cassegrain reflector antenna system, the

significant source of illumination amplitude error during beam scanning is misalignment of the

illumination pattern with the main reflector caused by the lateral feed translation. A small

amount of illumination error is also introduced during beam scanning by edge illumination taper

changes resulting from axial feed translation. Illumination misaligment, illustrated in Figure

3.1.1-1, can be significant in subreflector scanned offset Cassegrain reflector antenna systems

because the required subreflector tilt repoints tile central ray from the feed away from the center

of the main reflector.

The effects of the illumination misalignment error can be estimated for an offset

Cassegrain reflector antenna system by inducing feed mispointing in the equivalent paraboloid

since feed mispointing does not induce defocusing. In order to estimate the effects of

illumination misalignment on tile far-field pattern on a Cassegrain reflector antenna, uv-plane

patterns were generated for its equivalent paraboloid using the TICRA GRASP7 numerical

electromagnetics code using physical optics surface integration analysis. As will be discussed in

Chapter 4, the equivalent paraboloid of the test case is axi-symmetric and has a diameter, Deq,

of 10.63 meters and a focal length, Feq, of 42.48 meters. Viewed from the feed, the equivalent
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Figure 3.1.1-1. Illumination mizalignment in the equivalent paraboloid.



paraboloid subtends a half-angle of 7.159 °. For this analysis the reflector w_ fed by standard

Gaussian feed patterns with reflector edge illuminations of-5, -10, -15, -20, and -2,5 dB. The

edge illumination specified for the study of illumination misalignme,lt does not include the

spherical spreading loss edge taper, but this effect is less thal_ 0.04 dB. Scan induced

illumination misalignment was simulated by pointing the center of tile illumination away from

the center of the reflector in steps of 0.2 reflector radii, Req, up to a maximum of 2 Req. Tile

maximum illumination misalignment of 2 R_ was chosen because it causes the feed pattern to

just miss the reflector surface.

The actual gain of an aperture antenna, G, is given by

4_rAe 4_rA (3.1.1-I)
G=_=e,,p ,_2

where A is the area of the projection of the main reflector into the aperture plane, and A is the

wavelength of operation. The effective aperture area, A e -- capA, where Cap is the aperture

efficiency of the antenna. Aperture efficiency can be factored as:

CaP ---- CsP Gill ._ Cs p Csan p C4_ (3. I. I-2)

where Csp is the spillover efficiency of tile reflector antenna system, Oil I iS the illumination

efficiency of the reflector antenna, _antp iS the illumination amplitude efficiency of the reflector

antenna, and c_b is the illumination phase efficiency of the reflector antenna. Spillover efficiency

is defined by

f/ O) dAPi(r,

A (3.1.1-3)
CsP -- Pt

where Pi(r,0) is the power density incident on the reflector aperture and Pt is the total power

from tile reflector feed antenna. Illumination amplitude efficiency is defined by [2]

Cam p --

f/[P lr,0) dA
A

(3.1.1-4)
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Illumination phase efficiency, ¢_, is given by

aperture

where Pi(r,0)ej_ isthe complex power densityincidenton the reflectoraperture and c,,upisthe

illuminationamplitude efficiencyfound from (3.1.I-4).Tile illuminationamplitude efficiency

term is included in illumination phase efficiency to remove the effects of aperture power

illumination so that the phase error efficiency is 100% for a focused system.

The far-field radiation patterns of the equivalent paraboloid with illumination

misalignment were calculated using GRASP7 physical optics/surface integration at 20 GHz.

Figure 3.1.1-2 shows the gain, G, of the equivalent paraboloid as a fimction of normalized

illumination misalignment distance, APh_ , for five edge illumination values. The gain loss

caused by illumination misalignment can be separated into two loss components corresponding

to decreased spillover efficiency and decreased illumination efficiency. As shown by Figure 3.1.1-

3, most of the gain loss caused by illumination misalignment consists of spillover loss.

Expressed in decibels, the decrease in spillover efficiency relative to the properly aligned case

varies from about 13 to 36 dB at an normalized illumination misalignment distance of 2. The

remaining gain loss, 3 to 9 dB at an normalized illumination misalignment distance of 2, is

comprised of decreased illumination amplitude efficiency as shown in Figure 3.1.1-4.

Illumination phase efficiency is 100% for this case since the system is focused. The overall

aperture efficiency, Cap , is shown in Figure 3.1.1-5 as a fimction of normalized illumination

misalignment distance, AP,a_; this is found from the data in Figure 3.1.1-3 using (3.1.1-1).

Figure 3.1.1-6 shows the sidelobe level, SLL, as a fimction of normalized illumination

misalignment distance, AP,a_, for the five edge illumination values. Although the plots are not
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smooth, the relative sidelobe level increases monotonically with increasing illumination

misalignment. The roughness in the curves is caused by tile consecutive blending of the

increasing near-in sidelobe, with the main lobe. Figure 3.1.1-7 shows the peak cross-polarization

level,

XPOL = Gcr(0#)ma x . G(0#)m_, (3.1.I-6)

as a function of normalized illumination misalignment distance, AR_, for the five edge

illumination values. Beam efficiency, defined as

2"s(°_iB) 2,_

/ / P(O,_b) sinOdSd_b

BE = e=o _=0
Pt (3.1.1-7)

where 03d B is angle from the main beam gain peak to the tile half-power point of the pattern,

P(0,$) is the power pattern of the antenna, and Pt is the power transmitted by the feed, is

shown in Figure 3.1.1-8 for several edge illumination values. In order to achieve the required

90% beam efficiency, the edge illumination must be lower than -12 dB for a system with no

illumination misalignment and still lower if illumination misalignment exists.

3.1.2 Phase Error Effects

The second source of antenna performance degradation during beam scanning is

aperture phase error resulting from distortion of the aperture constant phase surface. The effects

of aperture phase errors, or aberrations, on antenna performance have been extensively studied

by Born and Wolf in connection with optical lens design [3]. Born and Wolf [1] represent

aperture phase errors with cylindrical Zernike polynomials of p and _b to define a constant phase

surface above the aperture. For small aberrations, tile first five terms of the aberration series

are sufficient to describe the constant phase surface [1]. These terms, called the Siedel

aberrations, are
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AL(p,_) = apcos_ + _p2 + 7p2cos20 + 6p3cosO + fp4 (3.1.2-1)

and are known, respectively, as distortion, curvature of field, astigmatism, coma, and spherical

aberration [1]. The constant aperture phase surface produced by each these aberration terms is

shown in Figure 3.1.2-1 [1]. The effects of these aberrations oil antenna patterns are usually

obtained by the simplification of the Zernike polynomial to a one-dimensional polynomial by

setting _b equal to either 0 or _- [1]. With this simplification, tile Siedet aberration series

becomes

AL(p) = c_p + (/_ + 7)P 2 + 6P 3 + eP 4 (3.1.2-2)

in the ¢ = 0 plane.

The linear phase error term, ap, does not degrade tile antenna pattern but rather steers

The amount of beam scanning
the beam away from the unscanned boresight direction [1].

caused by this aberration is

) (3.1.2-3)0o = sin "1

where D M is the diameter of the antenna aperture and A is the wavelength at the frequency of

operation [1]. This is the desired constant aperture phase surface which should be attained

during beam scanning while minimizing the other aberration terms and illumination errors. A

secondary pattern effect which is associated with this aberration term is a small change in the

size of the projected aperture. For a symmetric aperture which is perpendicular to the

unscanned beam, this change is a reduction of the projected aperture diameter which is

proportional to cos 0o.

The quadratic phase error term, (/_ + "r)P 2, has no beam scanning effect since it

represents a symmetric aperture phase taper. This aberration will, however, lead to an increase

in the overall sidelobe level and pattern mill-filling [1]. The exact effects of quaxlratic phase

error can be determined by an analysis presented by Silver [4]. This analysis gives the far-field
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radiation pattern of the aperture from

1

g(u) = ._ / f(p) e i[u°" _p2] dp (3.1.2-4)
-1

where u- (._)sin0 and f(p)is assumed to be an even function which represents the

amplitude distribution across the aperture [1].

field power pattern is

P(u) _ DM---_2{go2(U)+/_2[go"(U)]2}
- 4

For small quadratic phase aberrations, the far-

where go(u) is the far-field radiation pattern with no aberration and go'(U) is the second

derivative of the aberration free far-field radiation pattern [1]. Tile effects of tile quadratic

phase error term on the pattern of an aperture with a uniform amplitude are shown in Figure

3.1.2-2 for /_ = 0, _ x_, and _- [1]. As _ increases, the pattern continues to deteriorate with the

main lobe eventually bifurcating but symmetry is maintained about the 0 = 0 axis [1].

The cubic phase error term, 6p 3, introduces additional beam scanning since it represents

an asymmetric aperture phase taper and also raises the peak sidelobe level [1]. Using Silver's

method to find the effects of the cubic phase error term on the far-field power pattern results in

P(u) ~ DM---_2{go(u) + 6go'(U)} 2 (3.1.2-6)
- 4

where go(u) is the far-field radiation pattern with no aberration and go'(n) is the third

derivative of the aberration free far-field radiation pattern [1]. The effects of the cubic phase

error term on the pattern of an aperture with a uniform amplitude are shown in Figure 3.1.2-3

for 7 0, a"= _-, and _ [1]. The cubic phase error term causes the main beam of the aperture to be

steered farther away from the unscanned boresight direction, 0 = 0, as 7 increases. Also, the

sidelobes increase on the side of the main beam away from 0 = 0 while the sidelobes on the side

of the main beam toward 0 = 0 decrease.

Like the quadratic phase, error term, the quartic phase error term, ¢p4, has no beam
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scanning effect since it represents a symmetric aperture phase taper. Also, like the quadratic

phase error term, the quartic aberration will increase the overall sidelobe level and fill in the

pattern nulls although the pattern degrades less than for a quadratic phase error of the same

peak value [I]. Using Silver's analysis, as for the quadratic and cubic phase error terms, the far-

field power pattern of the quartic phase error term is

- 4

where go(U) is the far-field radiation pattern with no aberration and go(4)(u) is the fourth

derivative of the aberration free far-field radiation pattern [1]. The effects of the quartic phase

error term on the pattern of an aperture with a uniform amplitude are shown in Figure 3.1.2-4

for ¢ = 0, 7r x
_-, and _- [1]. As expected from the similarities between (3.1.2-7) and (3.1.2-5), Figure

3.1.2-4 is much the same as Figure 3.1.2-2 except with a smaller pattern degradation for a given

peak aberration [1].

The boresight gain loss for quadratic, cubic, and quartic phase errors is shown in Figure

3.1.2-5 [1]. With the exception of the cubic phase error, the effect of an aberration with a given

peak phase error decreases with increasing order. The effect of cubic phase error is greater

because the beam peak is scanned away from boresight by the resulting asymmetric phase

distribution. This relationship between aberration order and pattern degradation for a given

peak phase error can be explained by noting that for a given peak phase error, the total error

decreases with increasing aberration order as shown in Figure 3.1.2-6. In addition to gain loss,

as shown for each of the non-linear phase error terms, aberrations of quadratic or higher order

also cause an increase in peak sidelobe level and can cause the filling of pattern nulls [1]. Of the

Siedel aberrations, cubic phase errors exhibit the greatest pattern degradation for a given peak

phase error [1].
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3.2 Beam Scanning Effects of Equivalent Paraboloid Offset

As discussed in Sections 2.4, a Cassegrain reflector system carl be represented with

reasonable accuracy by an equivalent paraboloid, which may or may not be offset, for offset

Cassegrain systems. Because this equivalence is developed using geometrical optics it is only

valid for focused systems. For a scanning offset Cassegrain reflector antenna system this means

that unscanned performance, especially cross-polarization level, call be improved by using the

Rusch condition discussed in Section 2.5. The additional concern for scanning offset Cassegrain

reflector antenna systems is that scan performance might be degraded by the use of a reflector

system geometry which has an axi-symmetric equivalent paraboloid.

Parameters of offset Cassegrain reflector antenna systems with three equivalent

paraboloid offsets are summarized in Table 3.2-1. These systems were studied to determine the

effect of equivalent paraboioid offset on the scanning characteristics of offset Cassegrain reflector

antennas. The three systems were synthesized using the main reflector of the test case which

will be discussed in Chapter 4. The feed point was allowed to vary to create systems with either

an axi-symmetric equivalent paraboloid or an equivalent paraboloid which was just fillly offset

above or below the axis of symmetry. The scanning performance of these systems was

determined by using GRASP7 analysis with geometrical optics/geometrical theory of diffraction

at the subreflector and physical optics/surface integration at the main reflector. The geometries

of these three systems with their equivalent paraboloids are shown in Figure 3.2-1.

3.2.1 Feed Motion Scanning

The study of the effect of equivalent paraboloid offset on offset Cassegrain reflector

antenna scanning characteristics was first performed using feed motion to scan the systems.

During this trial, the feed of each system was translated in three dimensions to achieve the
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Table 3.2.-1. Characteristics of three offset Cassegrain reflector ant.enna system using the same
main reflector but with three different equivalent paraboloids.

Main reflector diameter (DM)

Main reflector offset height (Ho)

Main reflector focal length (FM)

Subreflector interfocal distance (2c)

Subreflector eccentricity (e)

Equivalent paraboloid focal length (Feq)

Equivalent paraboloid offset height (Hoeq)

Feed point (xf, yf, zr)

Feed pattern

Frequency of analysis

10.63 meters

7.795 meters

13.5 meters

6.9 meters

1.919

42.5 meters

0 and 4-5 meters

near (-0.442, 0.0, 6.614)

- 15 dB subreflector

edge illumination
Gaussian pattern

20 GHz
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lowest possible aperture phase error as defined by the transmit mode raytracing error fimctional

which will be described in Section 5.2. Tile transmit mode raytracing error fanctional was used

to position the feed to allow the same error functional to be used for both feed and subreflector

motion scanning. The systems were fed by a feed pattern which produced a -15 dB edge

illumination for the analysis. The feed pattern was held fixed at the optimal nnscanned

pointing for each system to simplify the synthesis and analysis.

The gain, G, of the three systems is shown in Figure 3.2.1-1. As for the unscanned case,

the gain of a scanned offset Cassegrain reflector antenna is essentially unchanged by equivalent

paraboloid offset. Spillover efficiency, Csp, shown in Figure 3.2.1-2, is also relatively unchanged

by equivalent paraboloid offset. The sidelobe level of the three systems could not be calculated

because phase errors caused null filling at relatively low scan angles. The only significant effect

of equivalent paraboloid offset on the scan performance of offset Cassegrain reflector antenna

systems is in cross-polarization level. The cross-polarization levels, XPOL, of the three systems

are shown in Figure 3.2.1-3. The system with the axi-symmetric equivalent paraboloid both

reaches the lowest cross-polarization level and generally performs the best although the systems

with offset equivalent paraboloids each exhibit a lower cross-polarized component over a small

portion of the scan region. This effect is caused by the change in illumination due to the

required scanning motion.

3.2.2 Subreflector Motion Scanning

The study of the effect of equivalent paraboloid offset distance on the scanning

characteristics of offset Cassegrain reflector antennas was also performed using subreflector

translation and rotation to scan the three systems of Table 3.2-1. The subreflector position was

determined to minimize the aperture phase error as defined by the transmit mode raytracing

error functional which will be discussed in Section 5.2 as in the feed motion scanning study.
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Also, the feed illumination was again geometrically defined to produce a -15 dB edge

illumination and was fixed to the optimum unscanned feed pattern pointing.

Figure 3.2.2-1 shows the gain, G, of the three systems as a function of scan angle in the

plane of offset, 0o. Again, the gain variation caused by equivalent paraboloid offset is small

although the difference in scanned gain is greater than for the feed scanned case. The spillover

efficiency, Esp, of the three systems is shown i,l Figure 3.2.2-2 and, like gain, is relatively

insensitive to equivalent paraboloid offset. Sidelobe level, SLL, could be found for the

subreflector scanned case and is also nearly unaffected by equivalent paraboloid offset as shown

in Figure 3.2.2-3. As for the feed scanned case, cross-polarization level, XPOL, is the only

pattern characteristic which was found to be strongly affected by equivalent paraboloid offset.

Figure 3.2.2-4 shows that the cross-polarized component is minimized in the system with an axi-

symmetric equivalent paraboloid but can be lower in certain regions of the scan range for either

system which has an offset equivalent paraboloid.

3.3 Beam Scanning the Offset Camegrain Antenna by Feed Displacement

The conventional method of mechanical beam scanning with tile offset Cassegrain

reflector antenna system is lateral feed displacement [5]. Lateral feed displacement is in

common use to form multiple spot beams using a single prime focus paraboloidal reflector

antenna for satellite-to-ground applications [6-8]. Increasing geostationary satellite antenna

performance requirements prompted INTELSAT to comn,ission a study by Krichevsky and

DiFonzo at COMSAT of beam scanning offset Cassegrain reflector antennas by optimal feed

displacement [9]. This study developed a method to determine the optimal feed location for any

desired main beam direction. Krichevsky and DiFonzo give results for beam scanning in the

same offset Cassegrain reflector antenna system using lateral feed displacement so that the
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increased performance of their optimum feed position scanning method carl be shown [5].

The Krichevsky and DiFonzo study of optimal beam scanning used the reflector system

geometry shown in Figure 3.3-1 [5]. This system consists of a paraboloidal main reflector with a

focal point at FI, a hyperboloidal subreflector with focal points at F 1 and F 2, arrd a point source

feed located at F 2 when the system is unscanned [5]. The coordinate system is constructed such

that F 2 lies at the origin and the unscanned aperture plane is perpendicular to the z-axis [5].

The subreflector rim is defined by the intersection of a cone with its vertex at F 2 and the

hyperboloidal surface on which the subreflector lies [5]. The angle between the axis of tire cone

which defines the subreflector edge and the +z-axis is 0 ! and the half-angle of the cone is 02 [5].

Main reflector size is determined by the area illumiuated by the ray bundles which are reflected

from the subreflector for all beam directions after the optimal feed positions are found [5]. This

method of sizing the main reflector is much less stringent because it assures that no spillover will

occur at the main reflector. Krichevsky and DiFonzo defined the plane of lateral feed

displacement as the plane which contains F 2 and is perpendicular to the axis of the cone which

defines the subreflector edge [5].

Krichevsky and DiFonzo determined the Ol)timum feed position for a given beam

direction by finding the intersection of the locus of feed positions which produce the desired

beam direction with the locus of feed positions which yield the minimum aperture phase error

[5]. For simplicity, in the analysis presented here, that of Krichevsky and DiFonzo [5], the

antenna system is assumed to be cylindrical arrd only rays which lie in the xy-plane are

considered. The complete derivation of tire optimmn feed position is available in Krichevsky [9].

The locus of feed positions which prodoce the desired beam direction is found by tracing

rays transmitted from a point source feed at Q(0, Y0, z0) a.s shown in Figure 3.3-1 [5]. The total

optical path length of a ray which satisfies the conditions imposed hy geometrical optics at the
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mainand subreflectors and strikes the subreflector at Pl(O, yj, zl) , tile main rt'flector at P2(O,

Y2, z2), and the aperture plane at P3(O, Y3, z3) is given by
3

L=EL i
i=l

where

Li = ¢(Yi" Yi-i) 2 + (zi - Zi.l) _ (3.3.2)

for i = 1, 2, or 3 [5]. The total optical path lengths and points of intersection with the aperture

plane of the upper and lower rays in the system are given by L u and L 1 and (Yu, Zu) and (Yl, zl)

as shown in Figure 3.3-2 [5]. From these parameters, the beam direction can be approximated

by

L u- L 1

Yu" Yl (3.3-3)

for small scan angles and feed displacements [5].

Krichevsky and DiFonzo next present the series expansions of the total optical path

length and transmitted ray/aperture plane intersection:

V 111

L = L (O) E E c'u,k YO k Zo m'k (3.3-4)
m=O k=O

and

y = y(O) _ _ Tm,k yok z0m. k (3.3-5)
m=0 k=O

where L (°) and y(O) are equal to L and y when the point source feed is at the unscanned feed

point F_ [5]. The value of v in the series expansions is the order of tile desired approximation:

a) first order approximation: _ ¢: 1

b) second order approximation: (_)2 ,_ 1

where R is the displacement of tile point source feed from the unscanned feed point F 2 and F H is

half the interfocal length of the parent hyperboloid of the subreflector [5]. By substituting (3.3-

4) and (3.3-5) into (3.3-3), Krichevsky and DiFonzo find the series expansioo for the locus of

feed positions which produce a constant beam direction:

(3.3-1)
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_= _ _Am.k)'0kz0m'k
m=o k=0 (3.3-6)

where Am, k is a series of coefficients which are defined in terms of the geometrical parameters of

the offset Cassegrain reflector antenna system [,5]. Tile coefficients, Am,k, and their derivation

are presented in Krichevsky and DiFonzo [5] and Krichevsky [9]. Tile constant beam direction

feed locus can be found from (3.3-6) by solving for Yo in terms of z0, a, and tile coefficients,

Am,k.

Figure 3.3-3 shows several constant beam direction feed position loci for the offset

Cassegrain reflector antenna system summarized by Table 3.3-1 [5]. The first-order, linear

approximation to (3.3-6) for each constant beam direction feed locus is shown in Figure 3.3-3 by

a dashed line which is labeled with the angular beam displacement caused [5]. Tile second-order

approximation to (3.3-6) is shown by a solid line which crosses the corresponding first-order

approximation [5]. Figure 3.3-4 shows the beam pointing error as a fimction of the beam

dir_tion predicted by the constant beam direction loci shown in Figure 3.3-3 [5]. The beam

directions used to determine the accuracy of tile constant beam direction feed loci were

calculated using a computer based pattern analysis code [.5]. TILe second-order approximation is,

as expected, more accurate with a maximum beam pointing direction error of less than 0.05"

compared to a maximum error of about 1.1" for the first-order approximation [5].

Krichevsky and DiFonzo [5] calculated the optimum feed position locus by dividing the

subreflector and tracing n rays from the unscanned feed point to tile subreflector with tile same

angular separation between the rays. This, in effect, divides the antenna for which the optimum

feed position locus is being determined into n-I small antennas [5].

02
02,n = "h-

and

0 2

01,m,n= "fi-(2m - I) + 01 - 02,

The substitutions,

(3.3-7)

(3.3-8)
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Table 3.3-1. Characteristics of the Krichevsky and DiFonzo [5] offse[ Cassegrain reflector

antenna system used for Optimum Feed Position Scanning.

Main reflector focal length (F1)

Subreflector focal length (F2)

Subreflector interfocal distance (2c)

Feed angle subtended by subreflector

IOOA

40A

20A

34.38"



.... FIRST ORDER

SECOND ORDER

I I J I _ "il-l I I
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Figure 3.3-4. Beam pointing error given by physical optics analysis for the Constant Beam
Direction locus of the system of Table 3.3-1 [5].
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where m is tile ray number from 1 to n. allow the use of the constant beam direction solution

method to find the beam direction for each of the subdivisions [5]. Tile difference between the

scan beam directions of the subdivisions can be minimized by using the constraint

}C(y O,Zo) =/im Z_ (emn- _,)2
m=l ' (3.3-9)

where _ is the overall beam direction since the beam direction for each of the subdivisions is

_m,n [5]. Since the solution must also lie on one of the constant beam direction loci, the

complete error function is

l(Yo, z0, 14) = G(y 0, Zo) + ll[y 0 _ fv(z0 ' _, Aa,,k) 1 (3.3-10)

where p is a Lagrangian multiplier [5]. After trigonometric and algebraic simplification of

(3.3-9), Krichevsky and DiFonzo found the following closed form solution for the optimum feed

position:

V Ill

Y_ _ lm.k Y0k Z0m'k-- O
m=l k=0 (3.3-1 1)

where Ira,k is a series of coefficients which are defined in terms of the geometrical parameters of

the offset Cassegrain reflector antenna system [.5]. The coefficients, Ira.k, and their derivation

are presented in Krichevsky and DiFonzo [5] and Krichevsky [9]. As for the constant beam

direction feed loci, v corresponds to the order of the desired approximation: either 1 for a first-

order, linear approximation or 2 for a second-order approximation [5].

The locus of optimum feed positions and the second-order approximation to the

constant beam direction loci for the system of Table 3.3-1 are shown in Figure 3.3-5 [5]. The

dotted line in Figure 3.3-5 represents the possible feed positions for lateral feed displacement

while the dashed and solid lines represent the first- and second-order approximations to the

optimum feed position locus [5]. The optimuni feed position for each beam direction can be

found at the intersection of the second-order approximation of the appropriate constant beam

direction loci and the second-order approximation of the optimum feed position locus [5]. The
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required motion for optimum feed positioning beam scanning reqltires both a lateral and a

longitudinal feed displacement.

Krichevsky and DiFonzo [5] used physical optics to find tile far-field patterns of the

optimum feed position movement scanned system of Table 3.3-1. Tile reflector system was

analyzed for a Potter horn feed with a radius of 2.3A at tile optimum feed position for each

beam direction [5]. The feed was repointed at each optimum feed position to align tile axis of

the feed with the angular center of the subreflector to minimize spillover [5]. Also, as mentioned

above, the main reflector surface size was determined by allowing no spillover at tile main

reflector [5]. Figure 3.3-6 shows several scanned beams for tile offset Cassegrain reflector

antenna system with the feed for each beam located at the optimum feed position [5]. Figure

3.3-7 shows several scanned beams from the offset Cassegrain reflector antenna system fed by a

3.1A Potter horn which was displaced laterally [5]. In both cases, the patteru of the offset

Cassegrain reflector antenna system tends to deteriorate less rapidly during downward beam

scanning, bat the optimum feed position scanned system shows less overall pattern deterioration.

Note that the aperture is partly blocked by the subreflector for beams which are scanned more

than about 5.8" below the unscanned boresight [,5].

3.4 Beam Scanning the Offset C,assegrain Reflector Antenna by SubreflocLor Tilt - The
Foldes Type 6 System

A reflector antenna system was proposed by Peter Foldes for use in tile NASA Mission

to Planet Earth radiometer design. This system, referred to as the Type 6 system, is

summarized by Figure 3.4-1 and Table 3.4-1. The Type (3 system was designed to scan by

subreflector tilt. For simplicity, the scanned systems were synthesized by tilting the subreflector

to an angle and then finding the resulting beam scan from the physical optics analysis result.

This also assured that the performance of tile Type 6 system was maximized. Unfortunately,
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Table3.4-1. Characteristics of tile Type 6 reflector antenna system of Foldes [10].

Main reflector focal length (FM)

Main reflector diameter (DM)

Main reflector offset height (Ho)

Subreflector eccentricity (e)

Subrefiector interfocal distance (2c)

Subreflector axis tilt angle (8)

Subreflector diameter (Ds)

Areal efficiency, _DM 2 4- DS2/

Feed tilt angle (a)

Intended scan range

Frequency of analysis

Feed pattern used for analysis

35 meters

25 meters

17.5 meters

2.81

14.5 meters

0o

3.56 meters

98%

17"

+0.5"

10, 20, and 40 GHz

-15 dB Gaussian edge
taper



this method for determining beam scanning parameters is not applicable to more sophisticated

system because the multiple degrees of freedom would require excessive time to analyze as

briefly discussed in Chapter 5.

The feed pattern was not specified by Peter Foldes and so was chosen to produce a -15

dB edge taper based on the beam efficiency results shown in Section 3.1. The scan performance

results shown here were calculated using the TICRA GRASP7 reflector antenna code. The

system was analyzed using geometrical optics/geometrical theory of diffraction at the

subreflector and physical optics surface integration at tile maiu reflector. For purposes of later

comparison, the Foldes Type 6 system was analyzed at 10, 20, and 40 GHz.

Figure 3.4-2 shows the gain, G, of tile Foldes Type 6 reflector antenna system as a

function of frequency and scan angle in the plane of offset, 0o. The system displays the expected

6 dB increase in gain for each octave increase in operating frequency. The significant increase in

scan induced gain loss with increasing frequency indicates that tile main source of error in the

Foldes Type 6 reflector antenna system is aperture phase error. This conclusion is supported by

the relative flatness of the curves for spillover efficiency, Csp, shown in Figure 3.4-3. As expected

the spillover efficiency is essentially frequency independent with tile slight variation being due to

the increase electrical size of the system causing less diffraction effects. The illumination

amplitude efficiency, earn p, shown in Figure 3.4-4 as a function of scan angle in the plane of

offset, 0o, was estimated for the Foldes Type 6 system by using the results presented in Section

3.1.1 because the presence of both amplitude and phase taper in the aperture field of a scanned

reflector antenna prevent determining the amplitude efficiency factor independently. The

illumination amplitude efficiency is essentially frequency independent and its small range

supports the conclusion that the main source of scan loss in the Type 6 system is phase error.

The illumination phase efficiency, e_, of the Foldes Type 6 reflector antenna system is shown in
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Figure 3.4-5 as a function of frequency and scan angle in tile plane of offset, 0o. Although the

illumination phase efficiency of the Type 6 system is fairly high at 10 GHz, at 20 and 40 GHz

phase errors are clearly the dominant scan loss mechanism. Like the illumination amplitude

efficiency, the illumination phase efficiency should be considered a diagnostic tool rather than an

exact measurement because the illumination amplitude efficiency estimate was used in the

calculation of the illumination phase efficiency. The overall aperture efficiency, Eap, of the Type

6 system is shown in Figure 3.4-6.

Figure 3.4-7 shows the sidelobe level, SLL, for the Foldes Type 6 reflector antenna

system as a function of frequency and scan angle in the plane of offset, 0o. The sidelobe level

should increase monotonically but blending of the increasing sidelobes with the main lobe and

null filling cause the observed roughness in the curve. Figure 3.4-8 shows the cross-polarization

level, XPOL, for the Type 6 system. The generally low cross-polarization level is caused by the

long effective focal length, 101.5 meters, of the system. The offset of the equivalent paraboloid

can be observed in the monotonic decrease in relative cross-polarization level with increasing

negative beam scan. The beam efficiency, BE, of the Foldes Type 6 reflector antenna system is

shown in Figure 3.4-9. As with the illumination phase efficiency, the beam efficiency is a strong

function of frequency. Since the limit of tile scan range is 90% beam efficiency, the scan range

of the Type 6 system is about 1.5 ° at 10 GHz, 0.8" at 20 GHz, and 0.6 ° at 40 GHz.
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Chapter 4

TEST CASE GEOMETRY SELECTION

The selection of a test case geometry for this study is motivated by the antenna

performance characteristics required by the Mission to Planet Earth. A NASA microwaves

radiometric earth observation science steering panel met twice in 1990 to determine the mission

parameters which would allow the project to make a significant contrib_ntion to the knowledge of

climatic and meteorological phenomena [1]. The requirements recommended by the panel are

summarized in Table 1.2-1. Tile frequency and beamwidth restrictions require an aperture

efficiency of 70% since a Virginia Tech study of the issues presented by large space antenna

structures found that an antenna of up to 25 meters diameter can be launched by a single

Shuttle Transportation System (STS) mission [l, 2].

As mentioned in Chapter l, tile necessity of sharing a geostationary platform with other

experiments requires that the antenna be capable of beam scanning by sub-optics motion to

avoid disturbing other experiments. The aperture efficiency required by the desired beamwidth

and frequency of operation effectively eliminates conventional spherical reflector antenna systems

from consideration despite their degradation-free scan performance. The Cassegrain reflector

antenna was selected since it is the simplest and most compact reflector configuration that

allows beam scanning by snbreflector motion. The high beam efficiency requirement indicates

that an offset antenna configuration would be desirable to eliminate apertnre blockage by the

subreflector/feed assembly.
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The test case main reflector has a diameter of DM= 10.63 meters, a focal length of

F M = 13.5 meters, and an offset distance of Ho= 7.795 meters. These dimensions were chosen to

allow possible verification of the synthesis procedure using a NASA Langley Antenna and

Microwave Research Branch test article [3]. The configuration and dimensions of the test article

are shown in Figure 4-1. This test article is a 42.52% scale model of tile proposed 25 meter

radiometric earth observation reflector antenna.

Since the results given in Section 3.2 show that the scan characteristics of Cassegrain

reflector antenna systems are insensitive to equivalent paraboloid offset, the test case geometry

was chosen to have an axi-symmetric equivalent paraboloid. This geometry selection should

minimize the overall cross-polarization experienced by tile system across the scan range. Tile

Rusch condition for this system can be found using (2.5-7) with a center angle, 0c, of 32.207°:

2e sin/3 (4-1)
32.207 _tan---w--- -- e2 + 1 - 2 e cos 8"

The eccentricity of the subreflector hyperboloid was chosen to be 1.919 to approximate the

relative subreflector size of the 25 meter diameter Foldes Type 6 reflector antenna system which

was originally proposed. This results in a subreflector diameter of about 1.4 meters for the test

case. The subreflector area used in the synthesis and the GRASP7 physical optics analysis is the

illuminated portion of the parent hyperboloid during unscanned conditions as determined by

geometrical optics raytracing.

The tilt angle, /J, of the line between the hyperboloid loci can now be found to be ]_ =

3.676 ° from (2.6-1). The interfocal length of the hyperboloid was chosen to be 6.900 meters to

place the feed point near the the subreflector/feed boom. These selections lead to a feed point

located at t0.442, 0.00O, 6.614} meters. The feed tilt angle, _, which will align the feed

boresight with the angular center of tile subreflector and the axis of the equivalent paraboloid

can now be found using (2.4-19):
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Figure 4-1. NASA Langley AMRB test article configuration and dimensions [3].
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tao tan/ / ,4',e-l -

Solving (4-2) with these selections of e and fl gives _ = 11.640 °. Tile test case is fed with an x-

polarized feed. The feed pattern is defined independent of frequency to produce a 15 dB edge

taper on the subreflector. This edge taper was chosen based on the beam efficiency results of

Section 2.1.1. The geometry of the test case is given by Figure 4-2 and Table 4-1.

The unscanned far-field pattern of the test case was evaluated using the TICRA

GRASP7 reflector analysis code. The evaluation was performed by geometrical theory of

diffraction analysis at the subreflector and physical optics/surface integration at the main

reflector. The gain pattern, G(u,v_ of the unscanned test case system is shown in Figure 4.3

over a rectangular uv-grid of -t-0.57". The cross-polarization pattern, XPOL(u,v_ of the

unscanned test case system is shown in Figure 4.4. The far-field pattern characteristics of the

unscanned test case are summarized in Table 4.2.
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Figure 4-2. Plane of offset view of tile fi,lal test case config.ration.
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Table 4-1. Characteristics of tile final test case geometry.

Main reflector diameter (DM)

Main refector focal length (FM)

Main reflector offset height (H o)

Subreflector axis tilt angle (_)

Subreflector eccentricity (e)

Subreflector interfocal length (2c)

Subreflector diameter (Ds)

Areal efficiency _,DM. z + DS2J

Subreflector scanning motions

Feed point (f)

Feed tilt angle (t_)

Feed pattern

Frequency of operation

10.63 meters

13.5 meters

7.795 meters

3.676 °

1.919

6.9 meters

1.4 meters

98.3%

x, y, and z translations

c_ and/3 rotations

1-0.442, 0.000, 6.614}
meters from the main

reflector vertex

11.64"

Gaussian pattern with

15 dB edge taper at
7.157"

20, 40, and 80 Gitz

Trot Cue Geometry Selection 100



r"

01

9-

01

II

0.01 0

0.008

0.006

0.004

0.002

0.000

-0.002

-o.oo4

-0.006

-0.008

-0.01 0
-0.01 0

u = cos_o sinO

Figure 4-3. Gain pattern ((;(u,v)) of the unscanned test ca.,_e system at. 20 (;llz.
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Figure 4-4. Cross-polarization pattern (XPOL(u,v)) of the unseanned test case
system at 20 GHz.
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Table 4-2. Far-field pattern characteristics of the unscamwd test c_e system.

Far-field pattern characteristic

Gain, G

Sidelobe level, SLL

Cross-polarization level, XPOL

Beam efficiency, BE

Aperture efficiency, Cap

Spiliover effiency, _'sp

Illumination amplitude emency, _'amp

Half-power beamwidth, HPBW

Frequency, G Hz

8020 40

65.67 71.72

-29.00 -29.32

-67.33 -73.40

93.28 93.44

74.44 74.95

94.74 94.85

78.57 79.02

0.092 0.046

77.78

-29.45

-74.70

93.63

75.63

94.98

79.63

0.023

Units

dBi

dB

dB

%

%

%

%

o
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Chapter 5

SIMPLIFIED ERROR FUNCTIONALSFOR GEOMETRICAL
OPTICSSYNTHESIS

As discussed previously, the test case developed in Chapter 4 beam scans by subreflector

motion. While the primary goal of this effort is the maximization of beam efficiency during

beam scanning, analysis of the pattern of the antenna to determine beam efficiency is

impractical for use as an error fimctional in determining the optimal position of the subreflector

during beam scanning. The physical optics analysis required to determine tile far-field pattern

of a Cassegrain reflector antenna system of this size requires approximately 6 minutes using a 50

MHz 80486 computer. An error functional of this complexity would result in an optimization

which would require over one month of computer time for a single scan direction. It is highly

desirable then to create a simple, computationally efficient estimate of the antenna's

performance.

The desire that the error functional be easy to evaluate requires that the error functional

be defined as a geometrical optics process with a minimal nnmber of mathematical operations.

Two error fnnctionals, the correcting stlbreflector surface fitting error functional and the

transmit mode raytracing error functional, were investigated. Both of these error functionals

involve a minimum of mathematical evaluation; each requires only a single summation and is

tolerant of a much coarser analysis grid than is physical optics analysis. Each error functional

was tested by using it to determine the optimum snbreflector position for several scanned beam

directions. Each case was then analyzed using the geometrical theory of diffraction at the
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subreflector and physical optics/surface integration at

GRASP7 reflector antenna analysis package.

the main reflector using tile TICRA

5.1 The Correcting Subreflector Surface Fitting Error Functional

The correcting subreflector surface fitting error functional determines tile optimum

position for the unscanned subreflector by fitting the repositioned unscanned subreflector to a

correcting subreflector for the desired scan direction. Because the optimization is based on

fitting the available subreflector to a fully illuminated correcting subreflector, this error

functional should be expected to emphasize the minimization of illumination amplitude errors at

the expense of illumination phase errors. A simpler version of this error functional was proposed

by Kitsuregawa [1] for beam scanning by subreflector motion in reflector antenna systems where

the main reflector and feed cannot be moved. The fitting error used by Kitsuregawa is given by

N (5.l-l)

'k = [(S'i-
i=l

where S' i is the i tl,.-21point on the repositioned unscanned subreflector, S i is the i rid point on the

correcting subreflector for the desired direction of scan, and i_si is the unit normal of the

correcting subreflector at the i tt2 point [1]. While Kitsuregawa [1] uses this error fimctional in a

system of least squares equations, it can also be used as an error estimate for optimization.

5.1.1 Analytic Development of the Correcting Subreflector

The test case reflector antenna system discussed in Chapter 4 is described by grids of

points which define the parent surface of the main and subreflectors. These grids are found by

using geometrical optics raytracing in the test case geometry. As discussed in Section 2.3,

Shell's law is satisfied at the main reflector anti the total path length of the rays from the

aperture plane through the system to the feed point is held constant to find the subreflector

Simplified Error Functionals for Geometrical Optics Synthesis
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points. This procedure, developed by Werntz [2], is also used in tile correctiug subreflector

surface fitting error function to find the phase error correcting subreflector for the scanned

system.

Figure 5.1.1-1 shows the geometry used to determine the subreflector points. The rays

used to define the system form a 25 x 25 grid in tile aperture plane which circumscribes the

projected aperture of the antenna system. A ray incident on the main reflector from the

aperture plane has a unit vector

F1 = {-sin0° c°s6° £' "sin0o sin_o Y" c°SSo _'}, (,5.1.1-1 )

where 00 is the scan angle from the z-axis and Oo is the scan angle from the x-axis toward the y-

axis as shown in Figure 5.1. I-2.

Tile length of a ray from the aperture plane to the main reflector is

IR11= c°s0° (ZA + tan(-0°)c°S_boXM + tan('0o)sin_boYM + ZM), (5.1.1-2)

where zA is the z-coordinate of the intersectio,_ of the aperture plane and the z-axis and

{ XM, YM, ZM} is a point on the mai,l reflector.

The unit vector of a ray reflected from the main reflector is found by satisfying Snell's

law at the main reflector. This gives

r'2 - r,- 2(_', ._M)_M, (5.1.1-3)

where fi" is the unit normal at the main reflector point given by (2.1-11)

where F is the focal length of the main reflector paraboloid. Five intermediate results are next

calculated to simplify the equations for the subreflector point. These are

I] = r'Ix" 2(r"l "nM)nMx
r'lz" 2(_'I"fi'M)fi'Mz ' (5.1.1-5)

12 = FlY - 2(r'l "n'M)nMy ' (5.1.I-6)
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Figure 5.1.1-1. Correcting subreflector synthesis geometry.
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Figure 5.1.1-2. Definition of scan angles.
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I/_h 2 (5.I.I-7)

14 = Lp-IRl], and (5.1.I-g)

15= 2[I,_/I+I,2+132+ I,(xM-_)+13(yMy,)]

where Lp isthe desiredpath length through the system and {xf,yf,zf} isthe feed point. The

subreflector point, IXs, YS, Zs}, can now be found by

142 -4-15zM - (Xf- XM) 2 - (yf- yM) 2 -4-ZM 2

ZS = 15 -4-'2ZM - 2zf

xs = 11(Zs-zM) + xM,

YS ----13(Zs- ZM) "4-YM"

- zf2
(5.I.l-9a)

(5.1.I-9b)

(5.1.1-9c)

The length of the ray from the subreflector point to the feed point is

IR3I = _/(Xs- xf)2 + (Ys- yf)2 + (Zs. zf)2 (5.1.1-1o)

so the unit v_tor of the ray from the subreflector point to the feed point is

xf'xs Yf" YS_-, ___- . (5.1 I-II)
_'_= _ _' I_1 IR_I

The subreflector unit normal can now be found by taking the difference b,.tween r'2 and _'3"

This results in

(_'3, - _'2,)_ +(F3y - _'_,)_ + (_'3, - _'_,)_

_. = x/(_., _'_,)2+(_'_,-_,)" +(_'_,-_,)_"
(5.1.1-12)

The set of subreflector points and normals generated by this procedure is either saved to a data

file in the case of test case. synthesis or used in the error functional as the correcting subreflector

during optimization.

5.1.2 Correcting Subreflector Surface Fitting Optimization Implementation - CSSFTI

The correcting subreflector surface fitting error flmctional is a slight extension of the

error functional of Kitsuregawa [1] given by (5.1-1). For the optimization, the error function is

expanded to a double summation over the grid of points of the subrefl_tor but is otherwise
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unchanged.Thisresultsin

'_' = s_,i s_)" _'s_J (5.1._-i)
i:i j:l

where S'id is the id _ point on the repositioned test case subreflector, Sid is the id tl_ point on

the correcting subreflector found using the method on Section 5.1.1, and n'sid is the normal of

the correcting subreflector. This error functional is then used to estimate the pattern error

caused by the current position of the test case subreflector. To achieve this, the error functional

is used in the two-stage optimization process which has the fimction blocks shown in Figure

5.1.2-1. The FORTRAN source code which implements this process is listed in Appendix 1.

The inner loop is a five-dimensional Powell's method optimization [3] which positions

the test case subreflector to best fit tile correcting subreflector. Tire test case subreflector can be

translated in the x-, y-, and z-directions and rotated about its center grid point ill Ct- and /./-tilts

as shown in Figure 5.1.2-2. The position of a translated and rotated test case subreflector point

is given by

XS' ---- Xt + Xg r + COSOrr (Xg - Xgr) + sina r sinBr (yg. ygr) + sinctr COS_ r (Z_ - Z._r) , (5.1.2-2a)

YS' = Yt + YSr + c°SBr(Yg " Ygr) " sinBr(Zg- Zgr), and (5.1.2-2b)

zS, = z t + zg r + sin%(xg - Xgr) + cos% sin/3r(y.g _ y.gr) + cos% coS_?r(Zg. Zgr) (5.1.2-2c)

where { Xs, , Ys" Zs'} is the repositioned test case subreflector point, { xg, yg, zg} is the test case

subreflector point, { Xgr, Ygr' Zgr} is the point about which the rotations occur, and { xt, Yt, zt}

is the vector of translations. The outer optimization loop is a Golden Section optimization

process [4] which varies the path length through the antenna system to allow the calculation of a

family of correcting subreflectors. This step is necessary because the curvatt, re of the correcting

subreflector is greater for higher total path lengths.

Simplified grn_ Fuactiomals for Geometrical Optics S.yuth,-;- 11 !



_0 'o0'FM 'DM'HO'x f 'y f.z f

xt. Yt. Zt.

at. 6 r

Figure 5.1.2-1. Correcting sL,breflector surface fitting error functional optimization algorithm
strtlcture.
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5.1.3 Predicted Subreflector Motions

The optimum subreflector positions were determined using tile correcting subreflector

surface fitting error functional for three scan paths: a scan from 0o - -1.0" to 00 -- 1.0" for

_bo = 0", a scan from ¢o -" 0" to ¢_o - 180" for 0o - 0.5", and a scan from _bo = 0" to _o = 180" for

00 - 1.0". These scan paths represent 39 individual scan directions with a average

computational time of nearly 45 minutes per direction or a total time of just over 29 hours. An

earlier version of the optimization which used five linear optimization routines instead of the

Powell's method inner optimization loop was noted to be substantially slower.

The constant ¢ scan path from 00 - -1.0" to 00 -- 1.0" was approximated by 21 discrete

scan directions at 0.1" intervals. The subreflector motion for this scan path consists of only x-

and z-translations and cz-rotation since the main beam is being scanned in the plane of offset.

The x-, y-, and z-translations required for this scan path are shown in Figure 5.1.3-1 as a

function of scan angle in the plane of offset. The maximum translation for this scan path is

about 0.25 meter at either limit of scan. The ct- and E-rotations required for this scan path are

shown in Figure 5.1.3-2 as a function of scan angle in the plane of offset. The maximum

rotation required for this scan path is less than 1".

The constant 0 scan paths at 00 = 0.5" and 0o - 1.0" were each approximated by 11

discrete scan directions from _o - 0" to _bo - 180" at 18" intervals. The x-, y-, and z-translations

required for these scan paths are shown in Figure 5.1.3-3. The required total translations for

these scan paths are nearly constant at approximately 0.11 meter for 0o - 0.5" and 0.25 meter

for 0o = 1.0". The c_- and E-rotations required for these scan paths are shown in Figure 5.1.3-4.

As for the case of scanning in the plane of offset, the maximum required rotation is slightly less

than 1".
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Figure 5.1.3-1. Optimum subreflector x-, y-, and z-translations (xt, Yt, zt) for the test case

system as determined using the correcting subreflector error functional as a function of scan

angle in the plane of offset (Oo).
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5.1.4 Computational Results using TICRA GRASP7 Physical Optics Analysis

The performance of the correcting subreflector surface fitting error functional was

evaluated by performing physical optics analysis to find the far-field radiation pattern

characteristics of the scanned test case geometries at 20, 40, and 80 GHz. These frequencies

were chosen to allow comparison with the results for tile Foldes Type 6 reflector antenna system

discussed in Section 3.4. Also, the two octave frequency range assists in tile determination of

the reasons for pattern degradation during beam scanning.

The selection of geometrical theory of diffraction analysis at the subreflector and

physical optics/surface integration analysis at the main reflector was mandated by the excessive

time required for physical optics/physical optics analysis. At 20 GHz a dual physical optics

analysis requires approximately 2 hours to complete on a 50 MHz 80486 computer.

Furthermore, the time required for a PO/PO analysis increases roughly as the cube of the

frequency. A further reduction in computing time was realized by limiting the output far-field

pattern to an area on the uv-plane which contained a constant number of sidelobes with respect

to frequency. This reduction in the OUtl)ut pattern area allowed the number of integration

points in the main reflector surface integration to remain constant rather than quadrupling with

each octave increase in frequency.

Figure 5.1.4-1 shows the gain, (;, of the test case reflector antenna system as a fnnction

of scan angle in the plane of offset, 9 o. As expected, the unscanned gain increases 6 dB for each

octave increase in frequency indicating no logs of efficiency with increasing frequency. However,

the scan loss varies greatly with frequency indicating i)h;_se error acro.gs the aperture. The

sidelobe level, SLL, of the test case is shown in Figure 5.1.4-2 as a function of scan angle in the

plane of offset, 9 o. The sudden changes i,l sidelol)e h'vel at the higher fre(luencies are caused by

sidelobes blending with the main lobe and indicate that significant phase errors are occurring.
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The cross-polarization level, XPOL, of tile test case, shown in Figure 5.1.4-3, is below -50 dB at

all three frequencies. The beam efficiency, BE, of tile test case is shown in Figure 5.1.4-4. Since

the 90_ beam efficiency point is taken to be the limit of scan, the test case has a scan range of

0.86" at 20 GHz, 0.42" at 40 GHz, and 0.2T at 80 GHz.

The aperture efficiency, Eap, of the test case system is shown in Figure 5.1.4-5. Figure

5.1.4-6 shows the spillover efficiency, _sp, of the scanned test case system. The feed mispoh_ting

results of Section 3.1.1 were used with the aperture efficiency and spiilover efficiencies to

approximate the illumination amplitude and phase efficiencies, _amp and _¢: Of the test case

system. These results, shown in Figure 5.1.4-7 and 5.1.4-8, suggest that most of the scan

induced pattern degradation is caused almost exclusively by phase error as expected.

Figures ,5.1.4-9 through ,5.1.4-16 summarize the analysis results for the constant 0 scan

paths. In general, these results show that the worst pattern degradation occllrs for scan in the

_o = 90" region.

5.2 The Traasmit Mode Raytracing Error Functional

The transmit mode raytracing error functional determines the optimum position for the

subreflector by minimizing the cross-product of the rays exiting the system w_th a unit vector in

the desired scanned beam direction. This is equivalent to minimizing the variation in the path

lengths of the rays transmitted through the system using the repositioned subreflector [5]. The

transmit mode raytracing error functional is defined

M N (5.2-I)

where r'll,i is the unit vector of the i_ tl_ ray in the system and _'D is a unit vector in the desired

scanned main beam direction. Unlike the correcting subreflector surf_e fitting error functional

ITJ
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which emphasizes illumination amplitude error, this error functional evaluales only illumination

phase error to provide an estimate of scanned pattern degradation.

5.2.1 Transmit Mode Raytracing Optimization Implementation - TMRTI

Optimization of the subreflector motions for scanned beams is much tile same for the

transmit mode raytracing error functional as for the correcting subreflector surface fitting error

functional. The single major difference between the optimization procedures is the elimination

of the outer path length optimization loop required by the correcting subreflector surface fitting

error functional. The general scheme for optimization using the transmit mode raytracing error

functional is shown in Figure 5.2.1-1. First, the subreflector is positioned using (5.1.2-2a)

through (5.1.2-2c) and a geometrical optics ray is traced through the system from tile feed to tile

main reflector. Next, a ray is traced from tile feed point to each of the grid points on the

repositioned subreflector. The unit vector of this ray is

Xf- XS, Yf- YS' ^ Zf- ZS, 1

where

IR3[= /(Xs" xf)2 + (Ys'- yf)2 + (Zs,- zf) 2. (5.2.1-2)

Shell's law is then used with this unit vector and tile unit normal of tile subreflector to find the

uz_it vector of the ray from the subreflector to the main reflector, _'2"

Unlike in the optimization using the Correction Subreflector Surface Fitting error

functional, the main reflector is analytically defined for the transnlit mode raytracing error

flmctional. This allows an exact solulion for the intersection of the ray from tile subreflector

with the parent paraboloid of the main reflector. The length of the ray from the subreflector to

the main reflector, ]R 2 I' can be found by usil_g the quadratic formula

IR I= 4ac b
2a (5.2.1-3)
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with

a - _'2x 2 + _'2y2

b -- 2F2xx s, + 2F2yys,- 4F_zF

c= xs,2+ys, 2-4z S,F.

The intersection of the ray and the parent paraboloid of the main reflector is then

The unit normal of the parent paraboloid of the main reflector, ffM can now be found from

(2.1-11}. Using this unit normal with the unit vector F2 in Snell's law gives the unit vector of

the ray which is reflected from the main reflector, F 1. This unit vector is calculated for each ray

which is traced through the system.

The other necessary component of the transmit mode raytracing error functional is the

unit vector of a ray exiting the system in tile desired scan direction, F D. This unit vector is

given by the negative of (5.1.1-1), the unit vector of a ray entering the system from the desired

scan direction. After /'1 is found for each of the rays in the system, the error is found from

(5.2-1). This error is used in the Powell's method optimization which repositions the

subreflector.

(5.2.1-4a)

(5.2.1-4b)

(5.2.1-4c)

5.2.2 Predicted Subreflector Motions

The optimum subreflector positions were determined for the test case with the transmit

mode raytracing error functional as with the correcting subreflector surface fitting error

functional for three scan paths: a scan from 0o = -1.0" to 00 = 1.0" for ¢o = 0", a scan from _o =

0*to ¢o = 180" for 0o = 0.5", and ascan from ¢o = 0"to ¢o = 180" for 9o = 1.0". A significant

decrease in the computational effort required was noted with a time of slightly less than 7

minutes per scan direction and a total time of 4 hours 29 minutes for all 39 scan directions.

This is over a six-fold reduction in the optimization time required.
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Tile required x-, y-, and z-translations for tile scan path in tile plane of offset are shown

in Figure 5.2.2-I as a function of scan angle in the plane of offset. The o- and f3-rotations

required for the scan path are shown in Figure 5.2.2-2 as a function of scan angle ill the plane of

offset. The scan motions produced by the transmit mode raytracing error functional are larger

because the subreflector ,s not constrained to be located along the central ray reflected from the

main reflector as in the correcting subreflector surface fitting optimization. Tile x-, y-, and z-

translations and a- and E-rotations required for the constant 0 scan paths at 0o = 0.5 ° and

0o = 1.0 ° are shown in Figures 5.2.2-3 and 5.2.2-4.

5.2.3 Computational Results using TICRA GRASP7 Physical Optics Analysis

The scanned test case systems created using tile transmit mode raytracing error

functional were analyzed as discussed in Section 5.1.4. Figure 5.2.3-1 shows tile gain, G, of the

scanned test case system as a function of scan angle in the plane of offset, 0o. The gain increases

approximately 6 dB for each octave frequency increase as with the correcting subreflector surface

fitting error functional, but, the loss during scan at each frequency is essentially independent of

frequency for tile transmit mode raytracing error functional. This difference indicates that the

scan loss is probably not being caused by illumination phase error. Tile io_ overall sidelobe

levels, SLL, shown in Figure 5.2.3-2 confirm this indication. Figure 5.2.3-3 shows the cross-

polarization level, XPOL, as a function of scan angle in tile plane of offset, 0o. Figure 5.2.3-4

shows the beam efficiency, BE, of tile test case system when optimized for beam scanning using

the transmit mode raytracing error functional. Tile beam efficiency produced with this

optimization approach is comparable with that using tile correcting subreflector surface fitting

error functional of Section 5.1 at 20 GHz and much higher at. the higher frequencies across the

scan path. The scan range as defined by a minimum beam efficiency of 90% is 0.72" at 20 Gtlz,

0.82" at 40 GHz, and 0.80" at 80 GHz. This is a scala range of 35 half-power beamwidths at 80
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GHz.

The aperture efficiency,Eap,of the scanned testcase system isshown in Figure 5.2.3-5

as a function of scan angle in the plane of offset,0o. The spillovereffiency,Eap, given by

GRASP7, is shown in Figure 5.2.3-6. As before,the resultsof Section 3.1.I were used to

generate approximate illumination amplitude and phase efficiencies,Camp and e_, for the

system. These efficienciesare shown in Figures 5.2.3-7and 5.2.3-8. As expected, the scan loss

in the test case systems synthesized using the transmit mode raytracing error functional is

dominated by spilloverand illuminationamplitude losses.

Figures 5.2.3-9through 5.2.3-16summarize the analysisresultsfor the constant 0 scan

paths. These resultsshow that the worst pattern degradation occurs for scan to positive0o

angles in the _bo = 0"region for the transmit mode raytracingerrorfunctional.This behavior is

caused by the extreme motions selected by the error functional in this region as shown in

Figures 5.2.2-I through 5.2.2-3.
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Chapter 6

SUMMARY

6.1 Conclusions

The goal of this work was to develop a high gain, wide scanning reflector antenna

system for use in a geostationary, microwave radiometric system for the Mission to Planet

Earth. The design constraints imposed by tile radiometric requirements of this mission are

summarized in Table l.l. Beam efficiency, given by (3.1.1-7), is the far-field pattern

characteristic that is of greatest concern during beam scanning. Tile beam efficiency must be as

high as possible for this mission because radiometry measures thermal noise. This means that

the ratio of desirable noise, the scene which is being observed, to undesirable noise, the rest of

the universe, must be as large as possible. Also, beam efficiency should be constant with

frequency because the radiometric measurements rnust be perfornted on several frequency bands

simultazleously.

The canonical offset Ca.ssegrain reflector antetma configuration was chosen to

complement the more complex structures being designed by Werntz [1] with the tri-reflector

configurations, by Shen [2] using the spherical main reflector configurations, and by

Takamizawa [3] using shaped-reflector configurations. The test c_Lse, surmnarized by Figure 4.2

and Table 4.1, was chosen to fit a 42.52% scale test article developed at NASA Langley

Research Center to allow possible experimental verification of the resulting beam scanning

system. This is the simplest system which is capable of scanning by subreflector motion only

Sumumm.y
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and has an areal efficiency of greater than 98%. Tile test case achieves all unscanned aperture

effiency of nearly 75% using a single feed rather than an array feed system for simplicity.

Two geometrical optics based error functionals were used to generate the optimum

scanning motions of the subreflector. The first of these, the transmit mode raytracing error

functional of Section 5.2, minimizes the far-field pattern degradation by minimizing the

mispointing between the rays exiting the system and a ray in the desired scan direction. Tile

test case system has a 90% beam efficiency scan range of 8 HPBW for D xl = 709A, 18 HPBW

for D M = 1417_, and 35 HPBW for D M = 2835A when optimized using this error functional.

Optimization of the test case system with the transmit mode raytracing error functional for a

single scan direction requires just less than 7 minutes using a 50 MHz 80486 micro-computer. It

is believed that this is the first application of an error flmctional of this type to the optimization

of subreflector induced beam scanning in a dual reflector system.

The correcting subreflector surface fitting error functional of Section 5.1, after

Kitsuregawa [4], was the second error functional used to find the optimum scanning motions of

the subreflector. This error functional minimizes the far-field pattern degradation by fitting the

unscanned subreflector to a phase correcting subreflector synthesized for the scan direction and a

given path length through the system. Optimization of the test cas_ system using this error

functional was over six times slower at nearly 45 minutes per scan direction. This difference in

optimization speed can be attributed to the additional optimization loop required to vary the

path length. The 90°A beam efficiency scan range of the test. case when optimized using the

correcting subreflector surface fitting error functional was found to be 9 I1PBW for D M = 709A

and 1417A and 10 HPBW for D M = 2835A.

The Foides Type 6 reflector antenna system, discus_sed in Section 3.4, is the other

subreflector scanned, high gain reflector system which was investigated. Aithought the Type 6
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system beam scans by subreflector tilt only it was found to be capable of a 90% beam efficiency

scan range of 19 HPBW for D M = 833A, 21 IIPBW for D M = 1667A, and 31 IIPBW for D M =

3333A. This scan performance is significantly greater than the scan performance of the test case

when optimized by either of the error fn,lctionals at the two smaller electrical aperture

diameters. Beca.se the Type 6 system has a higher s.breflector ecce,ltricity, one concern raised

by its larger scan range is that the scan range of an offset Cassegrain reflector antenna may be

highly affected by sabrefiector eccentricity. The transmit mode ray(racing error functional does

have a scan range which is comparable with that of the Type 6 syste,n at. the largest electrical

aperture size. Also, the lower phase error observed for the transmit mode ray(racing error

functional promises better scan perfornlance with increasing aperture size than for the Type 6

system. The scan characteristics of these three wide scanning reflector antenna system are

summarized in Table 6.1-1.

The Ol)timization approach presented in Chal)ter 5 shollld be al)l)licable to any dual

reflector antenna system. In general, the transnJit mode ray(racing error functional should be

used to optimize systems with electrically large apertnres. Also, the transmit mode raytracing

error fnnctional is more suitable for radiometric systems be(arise the beam efficiency of the

resnlting scanned system is more constant a.s a function of frequency. The correcting

s.breflector surface fitting error ftmctional is better stilted to srnaller apertnre antennas. The

transition between the applicable ranges of these two error f.zlctionals as imt)lemente d here

occnrs for systems of D M from 800A to 1000A. The correcting stlbreflector surface fitting error

fnnctional is better st, ited for use in the optimization of systems using array fee(Is to compensate

for aperture phase error because tiffs error functional primarily maximizes illumination

anlplitn(le and spillover efficie,lcy.

Other than tile original geostatiollary radiometric mission, two pos.sible uses for
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Table 6.1-1. Scan characteristics of three high gain, wide scanning reflector antenna systems.

( .... indicates unavailable information or incomplete information would be provided)

r

00 ¢_o System G SLL XPOL BE Ca Es xt zt ar
deg) (deg'_ (dBi) (dB) (dB) (%) (_o) (_o) (m) (m) (deg)

0.0 0 Type 6 79.27 -29.47 -44.5 94.61 77.08 96.21 ............ 0.00
TMR 77.78 -29.45 -74.7 9:3.63 75.63 94.98 0.00 0.00 0.00

CSSF 77.78 -29.43 -74.7 9:3.63 75.63 94.98 0.00 0.00 0.00

0.5 0 Type 6 76.26 ........ 42.0 77.76 39.12 95.87 ............. 1.82
TMR 76.90 -22.65 -55.3 87.04 61.76 90.37 0.12 0.06 -3.59

CSSF 71.32 - -57.:3 :39.85 17.09 95.:35 -0.08 -0.09 -0.4'2

0.5 45 Type 6 ...............................
TMR 76.99 -'2'2.69 -40.8 87.93 63.06 91.42 ..................

CSSF 71.89 ........ 42.0 12.54 19.51 94.55 ..................

0.5 90 Type 6 ...............................
TMR 77.05 -23.04 -37.8 89.80 63.93 92.40 ..................

CSSF 71.58 ........ 39.1 6.12 18.14 93.71 ..................
...... --= --

0.5 135 Type 6 ...........................................
TMR 77.02 -23.29 -41.'2 89.91 63.49 92.54 ..................

CSSF 71.66 ........ 41.4 17.78 18.48 93.76 ..................

O.5 180 Type 6 77.18 ........ 48.1 82.72 47.86 94.28 ............ 1.79
TMR 76.99 -23.66 -55.1 89.78 63.05 92.45 -0.07 -0.04 2.85

CSSF 71.63 ....... 57.2 :35.15 18.35 94.21 0.09 0.08 0.41

1.0 0 Type 6 69.67 ........ :38.7 37.31 8.51 92.75 ............ 3.69
TMR 73.78 -18.13 -49.8 59.91 30.11 69.93 0.33 0.18 -8.47

('.SSF 67.33 ........ 51.2 19.10 6.82 95.14 -0.16 -0.19 -0.85

1.0 45 Type 6 .........................
TMR 74.77 -13.54 -34.8 68.96 :37.86 79.04 ................

CSSF 67.87 ........ :35.9 0.89 7.72 93.30 ..................

Type 6

TMR

CSSF

Type 6

TMR

CSSF

Type 6
TMR

Summary
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subreflector induced beam scanning are tracking of geostationary satellites by large earth station

antennas and reduction of the actuator demands imposed by over-zenith tracking in elevation

over azimuth pedestals. A typical large earth station antenna in tile 100' class has a half power

beam width of about 0.06" at C-band. These earth stations must track geostationary satellites

because most geostationary satellites have diurnal angular motions of greater than 0.06 °. An

antenna system capable of beam scanning over the limited tracking range required for this use

would allow the use of smaller actuators for tracking by displacing the much smaller subreflector

instead of the entire antenna. Over-zenith tracking itl elevation over azimut]l pedestals currently

requires very rapid azimuth slew when tile target passes through the zenith. A system capable

of beam scanning by subreflector motion could reduce the maximum azimuth slew rate by using

subreflector induced beam scanning to hold the beam on target near the zenith. This would

allow the azimuth slew to occur more gradually during the time the target is near, rather than

at, the zenith.

The characteristics of five scanning antenna configurations of increasing complexity are

summarized in Table 6.1-2. The prime-focus paraboloid with scanning achieved by lateral or

optimal feed movement is included for comparison ptlrposes [1]. The Type 1 system is the test

case system described here and is scanned by optimal subreflector positioning as determined

with the transmit mode raytracing error functional. Tile Type 2 system is the Cassegrain II tri-

reflector system of Werntz [1]. The spherical system is the two subreflector and one caustic

mirror with feed tilt system of Shen [2]. As shown, the scan range of reflector antenna systems

generally increases with increasing complexity. On the whole, the Type 1 system described here

provides good overall scan range while remaining fairly simple. Also, the Type 1 system's areal

and aperture efficiencies are significantly higher than those of the other two systems investigated

here a Virginia Tech.
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Table 6.1-2. Characteristics of five wide scanning reflector antenna systems

Parameter

_lain reflector diameter (DM), A

F/Dp

DM 2 '_Areal efficiency DM 2 + ... + DsZ¢

Translational degrees of freedom

Rotational degrees of freedom

Gain (G), dBi

Aperture efficiency (Cap), %

1 dB gain loss scan range, HPBW

Prime-focus Parab.

Feed movement

lateral Optimal

.......... 700

1.000 1.000

1.0000 1.0000

1 2

1 1

8 34x0

Type 1

(LaPean)

2835

0.515

0.9817

77.78

75.63

5O

Type 2

(Werntz)

480

0.519

0.8818

62.44

77.13

30 x 60

Spherical

(Shen)

1200 x 1000

0.260

0.9218

0

feed: 1

mirror: 2

63

50

82

Summary



6.2 Future Work

Future efforts to improve tile scanning capabilities of offset canonical Cassegrain

reflector antennas should focus on tile following four main areas.

• Improving the transmit mode raytracing error functional.

Tile basic form of the transmit mode raytracing error functional could be expanded to

include illumination error effects as well as phase error effects. While this would

necessarily cause the optimization to be performed for a given frequenc.v of operation,

many antenna systems, especially for civil communications, operate over only a narrow

band of frequencies.

• Improving the correcting subreflector surface fitting error functional.

The implementation of the error fimctional could be extended to allow the grid of points

to be of variable size. This improvement would allow a portion of the actual

subreflector to be fitted to the correcting subreflector. This will possibly allow a closer

fit as tile cornpound curved surface move relative to each other. One potential

cornplicatio,l to this scheme is that the illuminated portion of the actual subreflector

may shrink below the region where geometrical optics techniques al_ply.

• Investigating the possibility of using a simple array feed system to extend the scan range.

A simple array feed could be used to reduce the aperture plm-se error. If the system was

not limited by a low spillover or illtmfiuation amplitude efficiency this could

significantly increase the scan raage. As mentioned ill Sc'ction 13.1, the correcting

subreflector surface fitting error fllllctiona] seems well suited for subreflector motion

optimization for an array fed systen, because this error functional primarily optimizes

the illumination aml_litude and spillover efficiencies. Bailey [5] and Smith [6] have

investigated the possibility of using array feed systems to improve the illurnination
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phase efficiency of reflector antenna systems.

• Investigating the effects of the geometry of Cassegrain reflector antenna s,,'stems on scan

range. The results of Section 3.2 indicate that the offset height of tile equivalent

paraboloid of an offset Cassegrain reflector antenna has little effeict oli its beam scanning

behavior. However, the effects of main reflector focal length, snbrefleictor eccentricity,

and other parameters were not investigated due to tile pre-existing geometry

requirements. The potential importance of this line of investigation is hinted at by the

scan range of the Foldes Type 6 sy._tem when scanned by subrefleictor tilt only.
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Appendix 1

Program listing of the Correcting Subrcflector Surface Fitting error functional

optimization software
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PROGRAM CSSF

IMPLICIT NONE

REAL*8 SRFMD(4),SRFM(25,25,6),SRFA(25,25,6),SCND(6),SCAN(2},FOC,

C FEED(3),X(4),SC(2),XP(4),PI,SRFS(25,25,6),SFOC(2,3)

INTEGER*2 ICN,I,J,T,P,TINC,PINC

CHARACTER*12 SUBFILE

COMMON /REFL/ SRFMD,SRFA,FOC,FEED,SC,SRFM,SRFS

PI=3.14158265358979323846D0

* Program inputs read from input file

OPEN(3,FILE='KSFTI.INP',STATUS='OLD')

READ(3, *) SRFMD(1), SRFMD(2), SRFMD(3), SRFMD(4)

READ(3,*)FOC,FEED(1),FEED(2),FEED(3)

READ(3,*)SCND(1),SCND(2),SCND(3),SCND(4),TINC,PINC

READ(3,*)X(1),X(4)

READ(3,*)ICN

READ(3, ' (AI2) ')SUBFILE

X(3)-O.DO

X(2)=O.DO

* Nominal subreflector data entry

OPEN(4,FILE=SUBFILE,STATUS='OLD,)

READ(4,'(6FI2.7)')SFOC(I,I),SFOC(I,2),SFOC(I,3),

C SFOC(2,1),SFOC(2,2),SFOC(2,3)

DO 1 I=I,25

DO 1 J=1,25

1 READ(4,'(6FI2.7)')SRFA(I,J,I),SRFA(I,J,2),SRFA(= 7 ?),

C SRFA(I,J,4),SRFA(I,J,5),SRFA " ._,

CLOSE (4)
Main reflector array setup

CALL MNREF

Perform scan optimized fitting for

WRITE(*,'(//,A1),), ,

SCAN(2)=SCND(2)
P=l

SCAN(1)=SCND(1)

T=I

WRITE(*,'(A25,D8.3,_7,D8.3),),
C

SC(1)=SCAN(1)

SC(2) =SCA,(2)

xP(1)=x(1)

xP(2)=x(2)

XP(3)fX(3)

XP(4)=X(4)

CALL PATHOPT(ICN,XP,SFOC)
ICN=ICN+I

SCAN(1)=SCAN(1)+SCND(3)
T=T+I

IF (T.LE.TINC) GOTO 3

SCAN(2)=SCAN(2)+SCND(4)

P=P+I

IF (P.LE.PINC) GOTO 2

STOP

scan combinations

Calculating for Theta = ',SCAN(I),

Phi = ',SCAN(2)
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END

SUBROUTINE MNREF

IMPLICIT NONE
REAL*8 SRFM(25,25,6),SRFMD(4),DEN,F,SRFA(25,25,6),FEED(3),SC(2),

C SRFS(25,25,6)

INTEGER*2 I,J
COMMON /REFL/ SRFMD,SRFA, F,FEED,SC,SRFM,SRFS

DO 1 I-1,25
DO 1 J-i,25

SRFM(I,J,2).(SRFMD(2)-SRFMD(1))*FLOAT(I-1)/24.DO+SRFMD(1)
SRFM(I,J,3}.(SRFMD(4)-SRFMD(3))*FLOAT(J-I)/24-DO+SRFMD(3)

SRFM(I,J,1)=2.5D.I,(SRFM(I,J,2)**2.DO+SRFM(I,J,3)**2"D0)/F
DEN.SQRT((SRFM(I,J,2)/(2.D0*F))**R.D0

C +(SRFM(I,J,3)/(2.D0*F))**2.D0+I.D0)

SRFM(I,J,4)-I.D0/DEN
SRFM(I,J,5)=-SRFM(I,J,2)/(2.DO*F*DEN)

SRFM(I,J,6)=-SRFM(I,J,3)/(2.D0*F*DEN)

RETURN

STOP

END

• Path length optimization subroutine

************************************************************************

SUBROUTINE PATHOPT(ICN,X,SFOC)

IMPLICIT NONE
REAL*8 SRFM(25,25,6),SRFS(25,25,6),FEED(3),SCAN(2),PI,FOC'PATH'

C SRFA(25,25,6),TRANS(6),R,C,TOL,X(4),EPS,F(2),SRFMD(4)'

C SFOC(2,3),XI(5,5),DSCAN(2)
INTEGER*2 ICN,I,J,N,ITER

COMMON /REFL/ SRFMD,SRFA, FOC,FEED,SCAN,SRFM, SRFS

PI.3.14159265358979323846D0

R=O.61803399D0

C=I.DO-R
TOL_I.D-IO

• Optimization initialization
SCAN(1)-SCAN(1)*PI/1.eD2
SCAN(2)-SCAN(2)*PI/1.8D2
X(3)-(X(4)+X(1))/2.DO
X(2)=R*X(3)+C*X(1)
PATH=X(2)
CALL RAYTRC(PATH)

DO I-1,5
TRANS(I)=O.DO

DO J=1,5
IF(I.EQ.J) THEN

XI(I,J)=I.DO
ELSE
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XI (I,J)=0.Du
ENDIF

ENDDO
ENDDO

Nffi5

CALL POWELL (TRANS, XI, N, TOL, ITER, EPS)
F(1)-EPS
PATH=X (3 )

CALL RAYTRC (PATH)
DO I=1,5

TRANS (I )=0. DO
DO J=1,5

IF(I.EQ.J) THEN

XI(I,J)=I.D0
ELSE

XI (I,J) =0.D0
ENDIF

ENDDO

ENDDO
N=5

CALL POWELL (TRANS, X I, N, TOL, ITER, EPS )
Y ( 2 ) =EPS

* Optimization loop

2 IF (ABS (X (4) -X (1)) .GT. TOL* (ABS (X (2)) +ABS (X (3)) ) )
IF (F(2).LT.F(1)) THEN

X(1)ffiX(2)
X(2)=X(3)

X(3) =R*X (2) +C*X (4)
F(1)=F(2)
PATH-.X (3 )

CALL RAYTRC (PATH)
DO I.-l, 5

TRANS (I )=0. DO

DO J=l,5

IF(I. EQ.J) THEN

XI (I,J)ffil.D0
ELSE

XI (I,J)=0.D0
ENDIF

ENDDO
ENDDO

Nffi5

CALL POWELL (TRANS, XI, N, TOL, ITER, EPS )
F(2)-EPS

ELSE

X(4) =X(3)
x(3)-x(2)

x(2) _R*x (3) +c*x (1)
F(2)ffiF(1)
PATH=X (2 )
CALL RAYTRC (PATH)
DO I=1,5

TRANS ( I ) =0. DO
DO J=1,5

IF(I. EQ.J) THEN
XI (I,J)-I.D0

ELSE

XI (I,J)=0.D0
ENDIF

ENDDO

THEN
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N=5

CALL POWELL(TRANS,XI,N,TOL, ITER,EPS)

F (1) =EPS

ENDIF

GOTO 2

ENDIF

* OutpUt of optimum subreflector translation and

DSCAN (1)-SCAN (I) *l. 8D2/PI

DSCAN (2) =SCAN (2) *i. 8D2/PI

CALL OUT(FEED,TRANS,DSCAN,ICN,SFOC,PATH,EPS)

RETURN

STOP

END

rotation and sys. info

• Correcting eubreflector generation subroutine

SUBROUTINE RAYTRC(PATH)

IMPLICIT NONE

REAL*8 SRFM(25,25,6), SRFS(25'25'6)'FEED(3)'SCAN(2)'RI(3)'R2(3)'

C RDOTN, pATH,A,B,C'K'R3L'R3(3)'RIL'pROD'DEN'SRFMD(4)'FOC'

C SRFA(25,25,6)

INTEGER*2 I,J

COMMON /REFL/ SRFMD,SRFA,FOC,FEED,SCAN,SRFM,SRFS

FIND COMPONENTS OF RAYS INCFDENT ON MAIN REFLECTOR

RI(1)=-COS(SCAN(1))
RI(2)=-SIN(SCAN(1))*COS(SCAN(2))

RI(3)=-SIN(SCAN(1))*SIN(SCAN(2))

DO 3 I=1,25

DO 3 J=1,25

FIND COMPONENTS OF RAY REFLECTED FROM MAIN REFLECTOR

RDOTN=RI(2)*SRFM(I,J,5)+RI(3)*SRFM(I,J,6)+RI(1)*SRFM(I'J'4)

R2(1)=RI(1)-2.*RDOTN*SRFM(I,J,4)

R2(2)=RI(2)-2.*RDOTN*SRFM(I,J,5)

R2(3)=RI(3)-2.*RDOTN*SRFM(I,J,6)

FIND LENGTH OF INCIDENT RAY BETWEEN MAIN REFLECTOR AND A.P.

RIL=COS(SCAN(1))*(I.D2+TAN(-SCAN(1)) *COS(SCAN(2))*SRFM(I'J'2)+

C TAN(_SCAN(1)),SIN(SCAN(2))*SRFM(I,J,3)-SRFM(I,J,I))

FIND SUBREFLECTOR POINTS BY SETTING TOTAL PATH LENGTH

A.(RI(2)-2.DO*RDOTN*SRFM(I,J,5))/

C (RI(1)-2.DO*RDOTN*SRFM(I,J,4))

C=RI(3)-2.DO*RDOTN*SRFM(I,J,6)

B=C, SQRT(I+A**2.DO)/SQRT(1-C**2.DO}

K=PATH-RIL
PROD=2.DO*(K*SQRT(I+A**2.D 0+B**2-DO)+A*(SRFM(I'J'2)-FEED(2))+

C B*(SRFM(I,J,3)-FEED(3)))

SRFS(I,J,1)=(K**2.D0+SRFM(I,J,I)*PROD

C -(FEED(2)-SRFM(I,J,2))**2.DO

C _(FEED(3)-SRFM(I,J,3))**2.D0+SRFM(I,J,1)**2"DO

C _FEED(1)**2.DO)/(PROD+2.DO*SRFM(I,J,I)-2-DO*FEED(1))

SRFS(I,J,2).A*(SRFS(I,J,I)-SRFM(I,J,I))+SRFM(I,J'2)

SRFS(I,j,3)=B*(SRFS(I,J,I)-SRFM(I,J,I))+SRFM(I,J'3)

FIND SUBREFLECTOR NORMAL

R3L=SQRT((SRFS(I,J,I)-FEED(1)) **2"D0

C +(SRFS(I,J,2)-FEED(2))**2.DO+
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C (SRFS(I,J, 3) -FEED(3) ) **2.D0)

RH(1)=(FEED(1)-SRFS(I,J,I))/R3L

R3 (2) = (FEED(2) -SRFS (I, J, 2) )/R3L

R3 (3)=(FEED(3) -SRFS(I,J, 3) )/R3L

SRFS (I, J, 4)=R3 (I) -R2 (i)

SRFS (I, J, 5) ..R3 (2) -R2 (2)

SRFS (I, J, 6)=R3 (3) -R2 (3)

DEN=SQRT(SRFS (I, J, 4) *,2. D0+SRFS (I,J, 5) *,2. D0+SRFS (I, J, 6)*,2 .D0)

SRFS (I, J, 4) =SRFS (I,J, 4)/DEN

SRFS(I,J,5)=SRFS(I,J,5)/DEN

SRFS (I,J, 6) =SRFS (I,J, 6)/DEN

RETURN

STOP

END

* Powell's Method Optimization

************************************************************************

SUBROUTINE POWELL (p, X I, N, FTOL, ITER, FRET)
IMPLICIT NONE

REAL*8 P(5),XI(5,5),PT(5),PTT(5),XIT(5),FTOL, FPTT,FRET,FP,T, DEL,
C FUNC

INTEGER*2 I, J, ITER,N, IBIG, ITMAX
ITMAX=200

FRET=FUNC (P)

DO J=I,N

PT(J) =P(J)

END DO

ITER=0

1 ITER=ITER+I

FP=FRET

IBIG=O

DEL=O. DO

DO I=I,N

DO J=I,N

XIT(J) =XI (J, I)

END DO

FPTT=FRET

CALL LINMIN(P, XIT, FRET)

IF (ABS(FPTT-FRET).GT.DEL) THEN

DEL=ABS (FPTT-FRET)

IBIG=I

END IF

END DO

IF (2. D0*DABS (FP-FRET). LE. FTOL* (DABS (FP) +DABS (FRET}) ) RETURN

IF (ITER. EQ. ITMAX) PAUSE 'Powell exceeding maximum Iteration,
DO J=I,N

PTT(J) =2. DO*P(J) -PT(J)

XIT(J) =P (J) -PT(J)

PT(J) =P(J)

END DO

FPTT=FUNC (PTT)

IF (FPTT.GE.FP) GOTO 1

T..2. DO* (FP-2. D0* FRET+FPTT) * (FP-FRET-DEL) **2. DO-DEL* (FP-FPTT) **2. DO
IF (T.GT.0.) GOTO 1

CALL LINMIN (P, XIT, FRET)
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DO J=I,N
XI (J, IBIG) =XIT(J)

END DO

GOTO I

END

SUBROUTINE LINMIN(P,XI,FRET)

IMPLICIT NONE
EXTERNAL FIDIM
REAL*8 P(5),XI(5) 'AX'XX'FRET'TOL'PCOM(50)'XICOM(50)'BX'FA'FX'FB'

C XMIN,BRENT

INTEGER*2 J,NCOM
COMMON /FlCOM/ PCOM,XICOM,NCOM

TOL=I.D-10

NCOM=5

DO J=1,5
PCOM(J)=P(J)

XICOM(J)=XI(J)

END DO
AX=0.

XX=I.
CALL MNBRAK(AX,XX,BX,FA,FX,FB,FIDIM)

FRET.BRENT(AX,XX,BX,FIDIM,TOL,XMIN)

DO J-1,5

XI(J}=XMIN*XI(J)
p(J)-p(J)+XI(J)

END DO
RETURN

END

REAL*8 FUNCTION FIDIM(X)

IMPLICIT NONE
REAL*8 PCOM(50),XICOM(50),XT(50),X,FUNC

INTEGER*2 NCOM,J

COMMON /FICOM/ PCOM,XICOM,NCOM

DO J=I,NCOM
XT(J)=PCOM(J)+X*XICOM(J)

END DO
FIDIM=FUNC(XT)

RETURN

END

SUBROUTINE MNBRAK(AX,BX,CX,FA,FB,FC,FUNC)

IMPLICIT NONE
REAL*8 AX,BX,CX,FA,FB,FC,DUM,GLIMIT,GOLD,TINY,R'Q'U'ULIM'FU'

C FUNC

GOLD=I.618034D0
GLIMIT'100.DO

TINY-I.D-20

FA-FUNC(AX)
FB=FUNC(BX)

IF(FB.GT.FA) THEN
DUM=AX

AX'BX

BX=DUM
DUM-FB

FB=FA
FA=DUM

END IF

CX=BX+GOLD*(BX-AX)
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FC=FUNC (CX)

IF (FB.GT.FC) THEN

R= (BX-AX) * (FB-FC)

Q= (BX-CX) * (FB-FA)

U=BX-((BX-CX),Q-(BX-AX).R) / (2.*SIGN(MAX(ABS(Q-R) ,TINY) ,Q-R))
ULIM=BX+GLIMIT* (CX-BX)

IF ((BX-U)*(U-CX).GT.O.) THEN

FU= FUNC (U)

IF (FU.LT.FC) THEN

AX=BX

FA=FB

BX=U

FB=FU

RETURN

ELSE IF (FU.GT.FB) THEN

CX=U

FC=FU

RETURN

END IF

U=CX+GOLD* (CX-BX)

FU=FUNC (U)

ELSE IF ((CX-U),(U-ULIM) .GT.0.) THEN
U=ULIM

FU= FUNC (U)

ELSE

U=CX+GOLD* (CX-BX)

FU=FUNC (U)
END IF

AX=BX

BX=CX

CX=U

FA=FB

FB=FC

FC=FU

GOTO 1

END IF

RETURN

END

REAL*8 FUNCTION BRENT(AX,BX,CX,F,TOL, XMIN)
IMPLICIT NONE

REAL*8 AX'BX,CX,F,TOL, XMIN,CGOLD,ZEPS,A,B,V,W,X,E,FX,FV,FW,XM,
C TOLI,TOL2,R,Q,ETEMP,P,D,U, FU

INTEGER*2 ITER,ITMAX

ITMAX=IO0

CGOLD=.3819660D0

ZEPS=I.0D-IO

A=MIN(AX,CX)

B=MAX (AX, CX)

V=BX

W-V

X=V

E=O.

FX=F(X)

FV=FX

FW=FX

DO ITER=I,ITMAX

XM=O.5*(A+B)

TOLI=TOL*ABS(X)+ZEPS

TOL2=2.*TOLI
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IF (ABS(X-XM) .LE. (TOL2-.5*(B-A))) GOTO 3

IF (ABS(E).GT.TOL1) THEN

R- (X-W)*(FX-FV)
Q= (X-V)*(FX-FW)
P= (X-V)*0- (X-W)*R
Q=2.* (Q-R}

IF (Q.GT.O) P--P

Q=ABS (Q)
ETEMP-E
E=D

IF(ABS(P) .GE.ABS (. 5*Q*ETEMP) .OR. P.LE.Q* (A-X) .OR.
P.GE.Q*(B-X)) GOTO 1

D=PIQ
U=X+D

IF (U-A. LT. TOL2 •OR. B-U. LT. TOL2 ) D=SIGN (TOLl, XM-X)
GOTO 2

END IF

IF (X.GE._'U THEN
E=A-X

ELSE

E=B-X
END IF

D'CGOLD * E

IF (ABS (D) .GE.TOLI) THEN
UsX+D

ELSE

U-X+SIGN (TOLl, D)
END IF

FU=F (U)
IF (FU.LE.FX) THEN

IF (U.GE.X) THEN
A=X

ELSE
B=X

END IF
V-W
FV-FW
W-X
FW-FX
X-U
FX-FU

ELSE

IF (U.LT.X) THEN
A-U

ELSE
B-U

END IF

IF (FU.LE.FW.OR.W.EQ.X) THEN
V-W
FV-FW
W-U
FW-FU

ELSE IF (FU.LE.FV.OR.V.EQ.X.OR.V.EQ.W) THEN
V-U
FV-FU

END IF
END IF

END DO
PAUSE 'Brent exceed maximum iterations.'

XMIN-X
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BRENT=FX

RETURN

END

* Powell's Method Optimization Error Function

REAL*8 FUNCTION FUNC(TRANS)

IMPLICIT NONE

REAL*8 SRFA(25,25,6),SRFAT(25,25,6),TRANS(5),RMSERR,SRFS(25,25,6),

C SRFMD(4),FOC,FEED(3),SC(2),SRFM(25,25,6)

INTEGER*2 I,J

COMMON /REFL/ SRFMD,SRFA,FOC,FEED,SC,SRFM,SRFS

CALL POSIT(SRFAT,TRANS)

RMSERR=0.D0

DO 1 I=I,25

DO 1 J=i,25

RMSERR-RMSERR+(((SRFAT(I,J,1)-SRFS(I,J,I))*SRFS(I,J,4))**2.D0

C +((SRFAT(I,J,2)-SRFS(I,J,2))*SRFS(I,J,5))**2.DO

C +((SRFAT(I,J,3)-SRFS(I,J,3))*SRFS(I,J,6))**2.DO)

CONTINUE

FUNC=DSQRT (RMSERR)

RETURN

STOP

END

SUBROUTINE POSIT(SRFAT,TRANS)

IMPLICIT NONE

REAL*8 SRFA(25,25,6),SRFAT(25,25,6),TRANS(5),SRFMD(4),FOC,FEED(3),

C SCAN(2),T(5),SRFM(25,25,6),SRFS(25,25,6)

INTEGER*2 I,J

COMMON /REFL/ SRFMD,SRFA,FOC,FEED,SCAN,SRFM,SRFS

T(1) =TRANS (3)

T (2) =TRANS (4)

T (3) =TRANS (5)

T (4) =TRANS (i)

T(5) =TRANS (2)

DO 1 I-i,25

DO 1 J_i,25

SRFAT(I,J,I)=T(1)+SRFA(13,13,1)-

C SIN(T(4))*(SRFA(I,J,2)-SRFA(13,13,2))+

C COS(T(4))*SIN(T(5))*(SRFA(I,J,3)-SRFA(13,13,3))+

C COS(T(4))*COS(T(5))*(SRFA(I,J,I)-SRFA(I3,13,1))

SRFAT(I,J,2)=T(2)+SRFA(13,13,2)+

C COS(T(4))*(SRFA(I,J,2)-SRFA(13,13,2))+

C SIN(T(4))*SIN(T(5))*(SRFA(I,J,3)-SRFA(13,13,3))+

C SIN(T(4))*COS(T(5))*(SRFA(I,J,I)-SRFA(13,13,1))

SRFAT(I,J,3)-T(3)+SRFA(13,13,3)+

C COS(T(5))*(SRFA(I,J,3)-SRFA(13,13,3))-
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C SIN(T(5))*(SRFA(I,J,I)-SRFA(13,i3,1?)

SRFAT(I,J,4)=-SI_(T(4))*SRFA(I,J,5)+
C COS(T(4))*SIN(T(5))*SRFA(I,J,6)÷

C COS(T(4))*COS(T(5))*SRFA(I,J,4)
SRFAT(I,J,5)-COS(T(4})*SRFA(I,J,5)+

C SIN(T(4))*SIN(T(5))*SRFA(I,J,6)+
C SIN(T(4))*COS(T(5))*SRFA(I,J,4)

SRFAT(I,J,6)-COS(T(5))*SRFA(I,J,6)-

C SIN(T(5))*SRFA(I,J,4)
RETURN

STOP
END

* 20

SUBROUTINE OUT(FEED,TRANS,SCAN,ICN,SFOC,PATH,RMSERR)
IMPLICIT NONE

REAL*8 FEED(3),TRANS(5),SCAN(2),SRFAT(25,25,6),PI,PATH,RMSERR,

C SFOC(2,3),GCOEF(IO),U,V

INTEGER*2 ICN,K(3)
CHARACTER* 12 OUTFILE
PI-3.14159265358979323846DO

U=SIN(SCAN(1)*PI/I.8D2)*COS(SCAN(2)*PI/1.8D2)

V-SIN(SCAN(1)*PI/I.8D2)*SIN(SCAN(2)*PI/I.8D2)

K(1)-48+ICN/IO0
K(2)=48+(ICN-(K(1)-48)*100)/10

K(3)=48+ICN-(K(1)-48)*100-(K(2)-48)*10

CALL POSITF(SFOC,TRANS,GCOEF)
CALL POSIT(SRFAT,TRANS)
OUTFILE='KSFTIXXX.MOV'

OUTFILE(6:6)-CHAR(K(1))

OUTFILE(7:7)=CHAR(K(2))
OUTFILE(8:8)=CHAR(K(3))

OPEN(4,FILE-OUTFILE,STATUS-'UNKNOWN')

WRITE(4,'(AI0,2FI2.7)')'SCANNED TO ',SCAN(1),SCAN(2)
WRITE(4,'(5F15.10}')TRANS(4),TRANS(5),TRANS(3),TRANS(1),TRANS(2)

WRITE(4,'(2F15.10)')PATH,RMSERR

ENDFILE(4)

CLOSE(4)
GHZ GRASP7 Input File
OUTFILE='KSFTIXXX.INP'

OUTFILE(6:6)-CHAR(K(1)}

OUTFILE(7:7)=CHAR(K{2}}
OUTFILE(8:8)-CHAR(K(3)}
OPEN(4,FILE-OUTFILE,STATUS='UNKNOWN')

WRITE(4,'(A30)')'***** GRASP77 INPUT FILE *****'

WRITE(4,'(AI0,2FI2.7)')'SCANNED TO ',SCAN(1),SCAN(2)

WRITE(4,'(FI2.7,412)')I.5D-2,2,1,0,0
WRITE(4,'(A31)')'** MAIN REFLECTOR INPUT DATA **'

WRITE(4,'(3FI2.7)')0.,0.,0.

WRITE(4,'(3F12.7)')I.,O.,O.
WRITE(4,'(3FI2.7)')0.,I.,0.

WRITE(4,'(I2,2FI2.7)')I,7.795,0.

WRITE(4,'(312)')4,0,0
WRITE(4,'(4FI2.7)')0.,0.,0.,13.5
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WRITE(4, ' (2F12.7) ') u 51.=,5.315

WRITE(4, ' (A30) ') '** St'- REFLECTOR INPUT DATA **'

WRITE(4,' (3F12.7) ')0.,0.,0.

WRITE(4,' (3F12.7) ')i.,0.,0.

WRITE(4, ' (3F12.7) ')0.,I.,0.

WRITE(4,' (I2,2F12.7)')I, (SRFAT(25,13,2)+SRFAT(I,13,2))/2.DO,

C (SRFAT(13,25,3)+SRFAT(13,1,3))/2.DO

WRITE(4,' (212) ')3,0

WRITE(4,' (5FI4.7)')GCOEF(1),GCOEF(2) ,GCOEF(3),GCOEF(4) ,GCOEF(5)

WRITE(4,' (5F14.7) ')GCOEF(6),GCOEF(7),GCOEF(8),GCOEF(9) ,GCOEF(IO)

WRITE(4,' (5F12.7,I5)')0.,0.,0.,0.,0.,I

WRITE(4,' (2F12.7)') (SRFAT(25,13,2)-SRFAT(1,13,2))/2.D0,

C (SRFAT(13,25,3) -SRFAT(13,1,3) )/2 .DO

WRITE(4,' (A21)')'** FEED INPUT DATA **'

WRITE(4,'(3F12.7)')FEED(2),FEED(3),FEED(1)

WRITE(4,' (3F12.7)').964483694,0.,-.264142395

WRITE(4,' (3F12.7)')0.,1.,0.

WRITE(4,'(I2) ')I

WRITE(4,' (6F12.7) ')0.,0.,0.,0.,0.,0.

WRITE(4,' (F12.7,I2) ')0.,I

WRITE(4,' (4F12.7,312) ')0.,0.,I.,90. ,0,0,3

WRITE(4, ' (I2) ' ) 6

WRITE(4,'(5FI2.7,I3)')-I5.,-15.,7.1574,0.,0.,I

WRITE(4,'(A40)')'** MAIN REFLECTOR FIELD SPECIFICATION **'

WRITE(4,' (I2)')1

WRITE(4,' (3F12.7) ')7.795,0.,10.

WRITE(4,' (3F12.7)')1.,0.,0.

WRITE(4,' (3F12.7)')0.,1.,0.

WRITE(4,' (216,F12.7,213) ')60,144,0.,0,0

WRITE(4,'(313)')O,-1,1

WRITE(4,' (F12.7)')10.

WRITE(4,'(2F12.7)')U,V

WRITE(4,' (213) ')0,i

WRITE(4,' (213)')3,1

WRITE(4,' (4F12.7,216) ')-I.D-2,-I.D-2,I.D-2, I.D-2,25,25

WRITE(4,' (416)')3,1

OUTFILE= ' KSFTIXXX. Pl '

OUTFILE (6 : 6) =CHAR (K (1))

OUTFILE (7 : 7 ) =CHAR (K (2) )

OUTFILE (8 : 8) =CHAR (K (3))

WRITE(4, ' (AI2) ')OUTFILE

WRITE(4,'(A39)')'** SUB REFLECTOR FIELD SPECIFICATION **'

WRITE(4,'(I2)')0

WRITE(4,'(A30)')'** FEED FIELD SPECIFICATION **'

WRITE(4,' (I2) ')0

ENDFILE ( 4 }

CLOSE(4)
OUTFILE= ' KSFUVXXX • INP '

OUTFILE (6 : 6 ) =CHAR (K (1) )

OUTFILE (7 : 7 )=CHAR (K (2) )

OUTFILE (8 : 8) =CHAR (K (3) )

OPEN ( 4, FI LE=OUTFI LE, STATUS= 'UNKNOWN ' )

WRITE(4,'(A25)')'UVPROC CONTROL INPUT FILE'

OUTFI LE'_' KSFTIXXX. Pl '

OUTFILE (6 : 6) =CHAR(K(1) )

OUTFILE (7 : 7 ) =CHAR (K (2))

OUTFILE (8 : 8)=CHAR (K (3))

WRITE(4, ' (AI2) ' )OUTFILE

WRITE(4,' (612)')I,I,i,i,0,0

WRITE(4,' (212)')i,I
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WRITF.(_,' (_i__ _O,_,u,O,l,O

WRITE(4,' (AI2)')' TEMP.P2'
WRITE(4,' (I2)')3

WRITE (4, ' (214) ') 101,101

WRITE(4,' (712)')0,0,I,i,0,0,0
WRITE(4,'(412)')3,0,2,0
WRITE(4, " (YS. I) ' )3.

WRITE(4, ' (F5.1) ')10.

WRITE(4,'(512)')I,0,0,1,1
WRITE (4, ' (F7.4) ') 0. 1213
ENDFI LE (4 )

CLOSE(4)
* 40 GHZ GRASP7 Input File

OUTFILEB 'KSFTIXXX. INP '

OUTFILE (6 :6)=CHAR (K (1) +1)
OUTFILE (7 :7)=CHAR(K (2) )

OUTFILE (8 :8 )..CHAR (K (3 ))

OPEN (4, FI LE-OUTFI LE, STATUS= 'UNKNOWN' )
WRITE(4,'(A30)')'***** GRASP77 INPUT FILE *****'

WRITE(4,'(AI0,2FI2.7),),SCANNED TO ',SCAN(I),SCAN(2)
WRITE(4,'(FI2.7,412)')7.5D-3,2,1,0,O
WRITE(4, ' (A31) ') '** MAIN REFLECTOR INPUT DATA **'

WRITE(4,'(3FI2.7)')0.,0.,O.
WRITE(4,'(3FI2.7),)I.,O.,0.

WRITE(4, ' (3F12.7) ') 0., 1., 0.
WRITE(4,' (I2,2F12.7) ')I,7.795,0.
WRITE (4, ' (312) ')4,0,0

WRITE(4,'(4F12.7),)O.,0.,O.,13.5
WRITE(4, ' (2F12.7) ') 5. 315,5. 315

WRITE(4, ' (A30) ') '** SUB P.EFLECTOR INPUT DATA **'
WRITE (4, ' (3F12.7) ')0. ,0. ,0.

WRITE(4, • (3F12.7) ') 1., 0., 0.

WRITE(4,'(3F12.7)')0.,I.,0.

WRITE(4,' (I2,2F12.7)')1, (SRFAT(25,13,2)+SRFAT(1,13,2))/2.DO,

C (SRFAT(13,25,3)+SRFAT(I3,1,3))/2.DO
WRITE(4,'(212)')3,0

WRITE(4, ' (5F14.7) ')GCOEF(1) ,GCOEF(2) ,GCOEF(3) ,GCOEF(4) ,GCOEF(5)

WRITE(4, ' (5F14.7) ' )GCOEF(6) ,GCOEF(7), GCOEF (8), GCOEF(9) ,GCOEF(IO)
WRITE(4,' (5F12.7,I5)')0.,0.,0.,0.,0.,I

WRITE(4, ' (2F12.7) ') (SRFAT(25,13,2)-SRFAT(1, 13,2) )/2 .DO,

C (SRFAT(13,25,3)-SRFAT(13, i, 3) )/2. DO
WRITE(4,' (A21) ') '** FEED INPUT DATA **'

WRITE(4, ' (3F12.7) ') FEED(2) ,FEED(3), FEED(l)
WRITE (4,,(3F12.7) ').964483694,0., -.264142395
WRITE(4, ' (3F12.7) ')O. ,1. ,0.
WRITE(4, ' (I2) ') 1

WRITE(4, ' (6F12.7) ')0. ,0. ,0. ,0. ,0. ,0.
WRITE(4,'(FI2.7,I2),)0.,I

WRITE (4, ' (4F12.7,312) ')0. ,0., 1. ,90. ,0,0,3
WRITE(4, ' (I2) ') 6

WRITE(4,' (5F12.7,I3)')-15.,-15.,7.1574,0.,0.,1
WRITE(4,' (A40)')'** MAIN REFLECTOR FIELD SPECIFICATION **'
WRITE(4, ' (I2) ') I

WRITE(4, ' (3F12.7) ') 7. 795,0., 10.

WRITE(4, ' (3F12.7) ')i., O., 0.
WRITE(4,' (3F12.7)')0.,I.,0.

WRITE(4,' (216,F12.7,213) ')60,144,0.,0,0
WRITE(4,'(313),)0,-1,1

WRITE(4,'(F12.7)')10.

WRITE (4, ' (2F12.7) ') U,V
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WRITE(4, ' (213) ')0,i

WRITE(4,' (213)')3,1

WRITE(4, ' (4F12.7,216) ')-5.D-3,-5.D-3,5.D-3,5.D-3,25,25
WRITE(4,' (416)')3,1

OUTFILE= 'KSFTIXXX. Pl '

OUTFILE (6 : 6) =CHAR(K(i) +i)

OUTFILE (7 : 7) =CHAR (K (2) )

OUTFILE(8 :8) =CHAR(K (3))

WRITE(4, ' (A12) ' ) OUTFILE

WRITE(4,' (A39) ') '** SUB REFLECTOR FIELD SPECIFICATION **,
WRITE(4,' (I2)')0

WRITE(4,' (A30) ')'** FEED FIELD SPECIFICATION **,

WRITE(4,' (I2)')0

ENDFI LE (4 )

CLOSE (4 )

OUTFILE= 'KSFUVXXX. INP '

OUTFILE (6 : 6) =CHAR (K (1) +1)

OUTFILE (7 : 7) =CHAR (K (2))

OUTFILE(8 :8) =CHAR(K(3) )

OPEN (4, FILE=OUTFI LE, STATUS= 'UNKNOWN ' )

WRITE(4,, (A25)'),UVPROC CONTROL INPUT FILE'

OUTFILE=' KSFTIXXX. Pl '

OUTFILE (6 : 6) =CHAR (K (1) +1)

OUTFILE (7 : 7) =CHAR (K (2) )

OUTFILE (8 : 8) =CHAR (K (3))

WRITE (4,, (A12) ' ) OUTFILE

WRITE(4,' (612)')1,1,1,1,0,0

WRITE(4,,(212),)I,1

WRITE (4,' (612) ')0,1,0,0,i,0

WRITE(4,, (AI2)') , TEMP.P2,

WRITE(4, ' (I2) ') 3

WRITE(4,' (214)')101,101

WRITE(4,' (712) ')0,0,1,1,0,0,0

WRITE(4,'(412),)3,0,2,0

WRITE(4,, (F5.1)')3.

WRITE(4,,(F5.1),)10.

WRITE(4,'(512),)I,0,0,1,1

WRITE(4, ' (F7.4) ') 0. 0606

ENDFILE (4)

CLOSE (4)
GHz GRASP7 Input File

OUTFILE= ' KSFTIXXX. INP '

OUTFILE (6 : 6) =CHAR (K(1) +2)

OUTFILE (7 : 7) =CHAR (K (2))

OUT F I LE (8 : 8 ) -CHAR (K (3 ) )

OPEN ( 4, FILE=OUTFILE, STATUS=, UNKNOWN ' )

WRITE(4,' (A30)') '***** GRASP77 INPUT FILE *****,

WRITE(4,' (AIO,2FI2.7),),SCANNED TO ',SCAN(I) ,SCAN(2)

WRITE(4,, (F12.7,412) ')3.75D-3,2,1,0,0

WRITE(4,' (A31)')'** MAIN REFLECTOR INPUT DATA **,

WRITE(4, , (3F12.7) ')0.,0.,0.

WRITE(4, ' (3F12.7) ,)i.,0. ,0.

WRITE(4,' (3F12.7) ')0.,i. ,0.

WRITE(4, ' (I2,2F12.7) ,) 1,7.795,0.

WRITE(4, ' (312) ') 4,0,0

WRITE(4,' (4F12.7) ')0.,0. ,0. ,13.5

WRITE(4, , (2F12.7) ') 5. 315,5. 315

WRITE(4,' (A30)')'** SUB REFLECTOR INPUT DATA **'

WRITE(4,, (3F12.7)')0.,0.,0.

WRITE(4,, (3F12.7) ') I.,0.,0.
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WRITE(4,' (3F12.7)')0.,I.,0.
WRITE(4,, (I2,2F12.7),)I, (SRFAT(25,13,2)+SRFAT(I,13,2))/2"DO,

C (SRFAT(13,25,3)+SRFAT(13,1,3))/2.D0

WRITE(4,'(212)')3,0
WRITE(4,,(5FI4.7),)GCOEF(1),GCOEF(2),GCOEF(3),GCOEF(4),GCOEF(5)

WRITE(4,,(5FI4.7),)GCOEF(6),GCOEF(7),GCOEF(8),GCOEF(9),GCOEF(10)

WRITE(4,'(5FI2.7,I5)')0.,0.,0.,0-,0-,I
WRITE(4,,(2FI2.7),) (SRFAT(25,13,2)-SRFAT(I,13,2))/2.DO,

C (SRFAT(13,25,3)-SRFAT(13,1,3))/2.DO

WRITE(4,'(A21)')'** FEED INPUT DATA **'

WRITE(4,,(3F12.7)')FEED(2),FEED(3),FEED(1)
WRITE(4,,(3FI2.7)').964483694,0.,-.264142395

WRITE(4,'(3F12.7)')0.,I.,0.
WRITE(4,'(I2}')I

WRITE(4,'(6FI2.7)')0.,0.,0.,0.,0-,0.

WRITE(4,'(F12.7,I2)')0.,I
WRITE(4,,(4FI2.7,312)')0.,0.,I.,90.,0,0,3

WRITE(4,'(I2)')6

WRITE(4,,(5FI2.7,I3}')-I5.,-15.,7.1574,0-,0.,I
WRITE(4,'(A40)')'** MAIN REFLECTOR FIELD SPECIFICATION **'

WRITE(4,'(I2)')I
WRITE(4,'(3FI2.7)')7.795,0.,10.

WRITE(4,'(3FI2.7)')I.,0.,0.
WRITE(4,'(3FI2.7)')0.,1.,O.
WRITE(4,'(216,FI2.7,213)')60,144,0.,0,0

WRITE(4,'(313)')O,-1,1
WRITE(4,'(FI2.7)')IO.

WRITE(4,'(2FI2.7)')U,V

WRITE(4,'(213)')0,1
WRITE(4,'(213)')3,1
WRITE(4,,(4FI2.7,216)')-2.5D-3,-2.5D-3,2.5D-3,2.5D-3,25,25

WRITE(4,'(416)')3,1
OUTFILE='KSFTIXXX.PI'

OUTFILE (6 :6) -CHAR (K (1) +2 )

OUTFILE (7 :7) -CHAR (K (2) )

OUTFILE (8 :8) -CHAR (K (3) )
WRITE(4,'(AI2)')OUTFILE

WRITE(4,'(A39)')'** SUB REFLECTOR FIELD SPECIFICATION **'

WRITE(4,'(I2)')0
WRITE(4,'(A30)')'** FEED FIELD SPECIFICATION **'

WRITE(4,'(I2)')0

ENDFILE(4)

CLOSE(4)
OUTFILE''KSFUVXXX.INP'

OUTFILE(6:6)'CHAR(K(1)+2)
OUTFILE(7:7)'CHAR(K(2))

OUTFILE(8:8)'CHAR(K(3))

OPEN(4,FILE=OUTFILE,STATUS='UNKNOWN')
WRITE(4,'(A25)')'UVPROC CONTROL INPUT FILE'
OUTFILE='KSFTIXXX.PI'

OUTFILE(6:6)'CHAR(K(1)+2)
OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8 :8)'CHAR(K(3) )

WRITE(_ •(AI2) ')OUTFILE
WRITE(4, ' (612)')I,I,I,I,0,0

WRITE(4, ' (212) ') i, 1
WRITE (4, ' (612) ')0,1,0,0, 1,0

WRITE(4,'(A7)')'TEMP-P2'

WRITE(4,'(I2)')3

WRITE(4,'(214)')I01,101
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WRITE(4,' (712) ')0,0,I,i,0,0,0

WRITE(4, ' (412) ')3,0,2,0

WRITE(4,' (F5.1) ')3.

WRITE(4, ' (F5. I) ') 10.

WRITE(4,' (512)')i,0,0,I,i

WRITE(4, ' (F7.4) ')0.0303

ENDFILE (4)

CLOSE (4)

RETURN

STOP

END

************************************************************************

* Type I Concept Subreflector Focal Point Positioning Code

************************************************************************

SUBROUTINE POSITF(SFOC,TRANS,GCOEF)
IMPLICIT NONE

REAL*8 SRFA(25,25,6) ,SFOC(2,3),TRANS(5) ,SRFMD(4) ,FOC, FEED(3) ,

C SCAN(2),T(5),GCOEF(10),SFOCT(2,3),ALPHA,BETA,GAMMA,

C DELTA,C,SRFM(25,25,6),SRFS(25,25,6)
INTEGER*2 I

COMMON /REFL/

T(1) =TRANS (3)

T(2) =TRANS (4)

T (3) =TRANS (5)

T(4) =TRANS (I)

T (5) =TRANS (2)

DO I I=i,2

SFOCT (I, 1

C

C

C

SRFMD,SRFA,FOC,FEED,SCAN,SRFM,SRFS

)=T(1)+SRFA(13,13,1)-

SIN(T(4))*(SFOC(I,2)-SRFA(13,13,2))+

COS(T(4))*SIN(T(5))*(SFOC(I,3)-SRFA(13,13,3))+

COS(T(4))*COS(T(5))*(SFOC(I,I)-SRFA(13,13,1))

SFOCT(I,2)=T(2)+SRFA(13,13,2)+

C COS(T(4))*(SFOC(I,2)-SRFA(13,13,2))+

C SIN(T(4))*SIN(T(5))*(SFOC(I,3)-SRFA(13,13,3))+

C SIN(T(4))*COS(T(5))*(SFOC(I,I)-SRFA(13,13,1))

SFOCT(I,3)=T(3)+SRFA(13,13,3)+

C COS(T(5))*(SFOC(I,3)-SRFA(13,13,3))_

C SIN(T(S))*(SFOC(I,I)-SRFA(13,13,1))
C=DSQRT((SRFA(13,13,1)-SFOC(2,1))**2.D0+

C (SRFA(13,13,2)-SFOC(2,2))**2.D0+

C (SRFA(13,13,3)-SFOC(2,3))**2.D0)_

C DSQRT((SRFA(13,13,1)-SFOC(I,I))**2.D0+

C (SRFA(13,13,2)-SFOC(I,2))**2.D0+

C (SRFA(13,13,3)-SFOC(I,3))**2.D0)

BETA=SFOCT(2,2)-SFOCT(I,2)

GAMMA=SFOCT(2,3)-SFOCT(I,3)

DELTA=SFOCT(2,1)-SFOCT(I,I)

ALPHA=SFOCT(I,I)**2.D0+SFOCT(I,2)**2.D0+SFOCT(I,3)**2.D0_

C SFOCT(2,1)**2.D0-SFOCT(2,2)**2.D0-SFOCT(2 3)**2 D0-
C C**2.D0 ' "

GCOEF(1) =4.D0*(BETA**2.DO-C**2.D0)

GCOEF(2) =8.DO*BETA*GAMMA

GCOEF(3) =4.D0*(GAMMA**2.D0-C**2.D0)

GCOEF(4) =4-DO*(ALPHA*BETA+2.D0*C**2.D0,SFOCT(2,2))

GCOEF(5) =4.D0*(ALPHA*GAMM +2.D0*C**2.D0*SFOCT(2,3))
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GCOEF(6) .ALPHA**2.D0-4.DO*C**2.D0*(SFOCT(2,1)**2.D0+
C SFOCT(2,2)**2.DO+SFOCT(2,3)**2-D0)

GCOEF(7) -4.D0*(C**2.DO-DELTA**2.D0)
GCOEF(8) .-4.D0*(ALPHA*DELTA+2.DO*C**2.D0*SFOCT(2,1))

GCOEF(9) =-8.D0*BETA*DELTA

GCOEF(IO)=-8.D0*GAMMA*DELTA
RETURN

STOP

END
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Program listing of the Transmit Mode ILaytracing error functional optimization
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.***************e*******************************************************

* Transmit Mode Raytracing Optimization Code

* James W. LaPean, Jr. 11/18/93

PROGRAM TMRT1

IMPLICIT NONE
REAL*8 SRFMD(4},SRFA(25,25,6),SCND(6),SCAN(2),FOC,RMSERR,TRANS(5),

C FEED(3),SC(2),PI,XI(5,5),TOL, SFOC(2,3)

INTEGER*2 ICN,I,J,T,P,TINC,PINC,N,ITER
CH_RACTER*12 SUBFILE

COMMON /REFL/ SRFMD,SRFA,FOC,FEED,SC
PI-3.14159265358979323846D0

TOL-1.D-10

* Program inputs read from input file

OPEN(3,FILEm'_4RTI.INP',STATUS-'OLD')
READ(3,*)SRFMD(1),SRFMD(2),SRFMD(3),SRFMD(4)

READ(3,*)FOC,FEED(1),FEED(2),FEED(3)
READ(3,,)SCND(1),SCND(2),SCND(3),SCND(4),TINC,PINC

READ(3,*)ICN
READ(3,'(AI2)')SUBFILE

* Nominal subreflector data entry

OPEN(4,FILE=SUBFILE,STATUS='OLD ')
READ(4,,(6F12.7),)SFOC(1,1),SFOC(1,2),SFOC(1,3),

C SFOC(2,1),SFOC(2,2),SFOC(2,3)

DO i I=i,25

DO 1 J=1,25
1 READ(4,'(6FI2.7)')SRFA(I,J,I),SRFA(I,J,2),SRFA(I,J,3),

C SRFA(I,J,4),SRFA(I,J,5),SRFA(I,J,6)

CLOSE(4)
* Perform scan optimized fitting for scan combinations

WRITE(*,'(//,A1)')' '

SCAN (2 )-SCND (2 )
P-1

SCAN ( 1 ) =SCND ( 1 )
T=I

WRITE(*,' (A25,D8.3,A7,D8.3)')' Calculating for
C ' Phi = ',SCAN(2)

SC(1)-SCAN(1)*PI/1.SD2
SC (2) =SCAN (2) *PI/1.8D2
DO I=1,5

TRANS (I)'O.dO
DO J'1,5

IF (I.EQ.J) THEN

XI (I,J)-I.D0
ELSE

XI (I,J)=0.D0
ENDIF

ENDDO

ENDDO

N=5

CALL POW ELL (TRAN S, X I, N, TO L, IT ER, RM SERR)

CALL OUT (FEED, TR_S, SCAN, I CN, S FOC )
ICNsICN+I

SCAN (I) -SCAN (I) +SCND (3)
T-T+ 1

IF (T.LE.TINC) GOTO 3

Theta = ' SCAN(1),f



SCAN (2 )=SCAN (2 ) +SCNO (4 )
P=P+I

IF (P.LE.PINC) GOTO 2
STOP

END

************************************************************************

* Powell's Method Optimization

SUBROUTINE POWELL(P,XI,N,FTOL, ITER,FRET)
IMPLICIT NONE

REAL*8 P(5),XI(5,5),PT(5),PTT(5),XIT(5) FTOL,FPTT FRET, FP,T,DEL,
C FUNC ' '

INTEGER*2 I,J,ITER,N,IBIG, ITMAX
ITMAXs200

FRET=FUNC (p)
DO J=I,N

PT{J) -P(J)
END DO
ITER=0

1 ITER=ITER+I
FPffiFRET
IBIGffi0

DEL=0.D0

DO I=I,N

DO J=I,N

XIT (J)_XI (J, I)
END DO

FPTT=FRET

CALL LINMIN(P,XIT,FRET)

IF (ABS(FPTT-FRET).GT.DEL) THEN
DEL=ABS(FPTT-FRET)
IBIG=I

END IF

END DO

IF (2"D0*DABS(FP-FRET).LE.FTOL*(DABS(FP)+DABS(FRET. _7URN

IF (ITER.EQ.ITMAX) PAUSE 'Powell exceeding maximum iteration'
DO J=I,N

PTT(J)=2.D0*P(J)-pT(j)
XIT(J)=P(J)-PT(J)
PT(J)_P(J)

END DO

FPTT=FUNC(PTT)
IF (FPTT.GE.FP) GOTO 1

T'2"D0*(FP-2.DO*FRET+FPTT;-(FP-FRET-DEL)**2.D0_DEL,(FP_FPTT)**2.DO
IF (T.GT.0.) GOTO 1

CALL LINMIN(P,XIT,FRET)
DO J=I,N

Xl (J, IBIG) =XIT(J)
END DO

GOTO 1
END

SUBROUTINE LINMIN(P,XI,FRET)
IMPLICIT NONE

EXTERNAL FIDIM
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REAL*8 p(5),XI(5),A^,._X,FRET,TOL,PCOM(50),XICOM(50),BX,FA,FX,FB,

C XMIN,BRENT

INTEGER*2 J,NCOM

COMMON /FICOM/ PCOM,XICOM,NCOM
TOL_I.D-10

NCOM=5

DO J=1,5
PCOM(J)=P(J)

XICOM(J)=XI(J)
END DO

AX=0.
XX=I.

CALL MNBRAK(AX,XX,BX,FA,FX,FB,FIDIM)

FRET-BRENT(AX,XX,BX,FIDIM,TOL,XMIN)

DO J=1,5

XI(J)-XMIN*XI(J)

p(J)=P(J)+XI(J)
END DO
RETURN

END

REAL*8 FUNCTION FIDIM(X)

IMPLICIT NONE

REAL*8 PCOM(50),XICOM(50),XT(50),X,FUNC
INTEGER*2 NCOM,J

COMMON /FICOM/ PCOM,XICOM,NCOM
DO J=I,NCOM

XT(J)=PCOM(J)+X*XICOM(J)
END DO

FIDIM-FUNC(XT)

RETURN
END

SUBROUTINE MNBRAK(AX,BX,CX,FA,FB,FC,FUNC)

IMPLICIT NONE
REAL*8 AX,BX,CX,FA,FB,FC,DI._,GLIMIT,GOLD,TINY,R,Q,U,ULIM,FU,

C FUNC

GOLD=l.618034D0
GLIMIT-100.D0

TINY=I.D-20

FA=FUNC (AX)
FB=FUNC(BX)

IF(FB.GT.FA) THEN
DUM-AX
AX-BX

BX=DUM

DUM-FB
FB=FA

FA=DUM
END IF

CX=BX+GOLD*(BX-AX)
FC=FUNC(CX)

IF (FB.GT.FC) THEN

R=(BX-AX)*(FB-FC)
Qm(BX-CX}*(FB-FA)
U.BX-((BX-CX)*Q-(BX-AX)*R)/(2.*SIGN(MAX(ABS(Q-R),TIN¥),Q-R)}

ULIM-BX+GLIMIT*(CX-BX)

IF ((BX-U)*(U-CX).GT.0.) THEN
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FU_FUI::-, - ;

IF (FU.LT.FC) THEN

AX=BX

FA=FB

BX=U

FB=FU

RETURN

ELSE IF (FU.GT.FB) THEN
CX=U

FC=FU

RETURN

END IF

U=CX+GOLD* (CX-BX)

FU=FUNC (U)

ELSE IF ((CX-U)*(U-ULIM).GT.0.)

U=ULIM

FU=FUNC (U)

ELSE

U=CX+GOLD* (CX-BX)

FU=,FUNC (U)
END IF

AX"BX

BX=CX

CX=U

FA=FB

FB=FC

FC=FU

GOTO 1

END IF

RETURN

END

THEN

REAL*8 FUNCTION BRENT (AX, BX, CX, F, TOL, XMIN)
IMPLICIT NONE

REAL*8 AX,BX,CX,F,TOL,XMIN,CGOLD,ZEPS,A,B,V,W,X,E,FX,FV, FW,XM,

C TOLl ,TOL2, R, Q, ETEMP, P, D, U, FU

INTEGER*2 ITER, ITMAX

ITMAX"I00

CGOLD=. 3819660D0

ZEPS=I. 0D-10

A'MIN (AX, CX)

B=MAX (AX, CX)

V=BX

W=V

X=V

E=0.

FX.,F (X)

FV=FX

FW..FX

DO ITER..I, ITMAX

XM,,O. 5* (A+B)

TOLI,,TOL*ABS (X) +ZEPS

TOL2,,2. *TOLl

IF (ABS(X-XM).LE. (TOL2-.5*(B-A))) GOTO 3

IF (ABS(E).GT.TOL1) THEN

R= (X-W)*(FX-FV)
Q= (X-V)*(FX-FW)
P= (X-V)*Q-(x-w) *R
Q=2. * (Q-R)
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IF (Q.GT.0) P--P

Q-ABS (Q)
ET ENP= E
E=D
I F (ABS (P) • GE. ABS ( • 5*Q*ETEMP) • OR. P. LE. Q* (A-X) • OR °

P.GE.Q*(B-X)) GOTO 1

D=P/Q
U=X+D
IF (U-A. LT. TOL2. OR. B-U. LT. TOL2) D=SIGN ( TOLl, XM-X)
GOTO 2

END IF

IF (X.GE.XM) THEN
E-A-X

ELSE

E=B-X

END IF

D=CGOLD*E

IF(ABS(D).GE.TOL1) THEN
U=X+D

ELSE
U=X+S IGN (TOLl, D)

END IF

FU=F (U)
IF (FU.LE.FX) THEN

IF (U.GE.X) THEN
A=X

ELSE
B=X

END IF

V=W
FV=FW
W=X

FW=FX
X,,U
FX=FU

ELSE
IF (U.LT.X) THEN

A,,U

ELSE
B=U

END IF

IF (FU.LE.FW.OR.W.EQ.X) THEN
V-W

FV=FW
W=U

FW=FU

ELSE IF (FU.LE.FV.OR.V.EQ.X.OR.V.EQ.W) THEN
V=U

FV=FU

END IF
END IF

END DO
PAUSE 'Brent exceed maximum iterations.'

XMIN=X

BRENT-FX

RETURN

END
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* Powell's Method Error Functional

REAL*8 FUNCTION FUNC(TRANS)
IMPLICIT NONE

REAL*8 SRFAT (25,25,6 ), TRANS (5 ), RMSERR

CALL POSIT (SRFAT, TRANS )
CALL XMTTRC (SRFAT, RMSERR)
FUNC=RMS ERR
RETURN

STOP
END

SUBROUTINE POSIT(SRFAT,TRANS)
IMPLICIT NONE

REAL*8 SRFA(25,25,6),SRFAT(25,25,6),TRANS(5),SRFMD(4),FOC, FEED(3),
C SCAN(2),T(5)
INTEGER*2 I,J

COMMON /REFL/ SRFMD,SRFA,FOC,FEED,SCAN
T (1) ITRANS (3)

T (2) =TRANS (4)

T(3 )tTRANS (5)
T(4) -TRANS (1)

T(5) =TRANS (2)

DO 1 I=1,25
DO 1 J=1,25

SRFAT(I,J,1)=T(1)+SRFA(13,13,1)-

C SIN(T(4))*(SRFA(I,J,2)-SRFA(13,13,2))+
C COS(T(4))*SIN(T(5))*(SRFA(I,J,3)-SRFA(13,13,3))+

C COS(T(4))*COS(T(5))*(SRFA(I,J,1)-SRFA(13,13,1))
SRFAT(I,J,2)=T(2)+SRFA(13,13,2)+

C COS(T(4))*(SRFA(I,J,2)-SRFA(13,13,2))+
C SIN(T(4))*SIN(T(5))*(SRFA(I,J,3)-SRFA(13,13,3))+

C SIN(T(4))*COS(T(5))*(SRFA(I,J,1)-SRFA(13,13,1))
SRFAT(I,J,3)=T(3)+SRFA(13,13,3)+

C COS(T(5))*(SRFA(I,J,3)-SRFA(13,13,3))-
C SIN(T(5))*(SRFA(I,J,1)-SRFA(13,13,1))

SRFAT(I,J,4)--SIN(T(4))*SRFA(I,J,5)+
C COS(T(4))*SIN(T(5))*SRFA(I,J,6)+

C COS(T(4))*COS(T(5))*SRFA(I,J,4)

SRFAT(I,J,5)-COS(T(4))*SRFA(I,J,5)+
C SIN(T(4))*SIN(T(5))*SRFA(I,J,6)+

C SIN(T(4))*COS(T(5))*SRFA(I,J,4)
SRFAT(I,J,6)=COS(T(5))*SRFA(I,J,6)-

C SIN(T(5))*SRFA(I,J,4)
RETURN

STOP
END
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* Type 1 Concept Transmit Mode Raytracing Error Functional

SUBROUTINE XMTTRC(SRFAT,RMSERR)

IMPLICIT NONE

REAL*8 SRFM(6),SRFAT(25,25,6),FEED(3),Rl(6),R2(6),R3(6),SCAN(2),

C RDOTN,A,B,C, FOC,R2L,PI,RMSERR,SRFMD(4),L,ANGLE(25,25),

C DEN,RA(3),SRFA(25,25,6)

INTEGER*2 I,J,MISS(25,25),K

COMMON /REFL/ SRFMD,SRFA,FOC,FEED,SCAN

pI13.14159265358979323846DO

* FIND IDEAL COMPONENTS OF REFLECTED RAY FROM MAIN REF.

RA(1)-COS(SCAN(1))

RA(2)-SIN(SCAN(1))*COS(SCAN(2))

RA(3)-SIN(SCAN(1))*SIN(SCAN(2))

DO 1 I-1,25

DO i J-1,25

MISS(I,J)-I

* FIND RAY AND RAY COMPONENTS FROM FEED TO SUBREFLECTOR

R3 (1)-SRFAT (I ,J, 1) -FEED(1)

R3(2)-SRFAT(I,J,2)-FEED(2)

R3(3)=SRFAT(I,J,3)-FEED(3)

L=DSQRT(R3(1)**2.DO+R3(2)**2.DO+R3(3)**2.D0)

R3 (4) =R3 (1)/L

R3 (5)-R3 (2)/L

R3 (6)-R3 (3)/L
* FIND COMPONENTS OF RAY REFLECTED FROM SUBREFLECTOR

* FIND

C

TO APERTURE PLANE

RDOTN-R3(4)*SRFAT(I,J,4)+R3(5)*SRFAT(I,J,5)+R3(6)*SRFAT(I,J,6)

R2(4)-R3(4)-2.*RDOTN*SRFAT(I,J,4)

R2(5)-R3(5)-2.*RDOTN*SRFAT(I,J,5)

R2(6)-R3(6)-2.*RDOTN*SRFAT(I,J,6)

INTERSECTION OF RAY FROM SUBREFLECTOR WITH MAIN REFLECTOR

A=R2(5)**2.DO+R2(6)**2.D0

B-2.D0*R2(5)*SRFAT(I,J,2)+2.DO*R2(6)*SRFAT(I,J,3)

-4.DO*R2(4)*FOC

C-SRFAT(I,J,2)**2.DO+SRFAT(I,J,3)**2.D0-4.D0*SRFAT(I,J,1)*FOC

R2L=(DSQRT(B**2.D0-4.D0*A*C)-B)/(2.DO*A)

SRFM(1)=SRFAT(I,J,1)+R2(4)*R2L

SRFM(2)-SRFAT(I,J,2)+R2(5)*R2L

SRFM(3)-SRFAT(I,J,3)+R2(6)*R2L

* FIND NORMAL OF MAIN REFLECTOR AT RAY INTERSECTION POINT

DEN-DSQRT((SRFM(2)/(2.D0*FOC))**2.DO+

C (SRFM(3)/(2.DO*FOC))**2.DO+I.DO)

SRFM(4)-I.DO/DEN

SRFM(5)--SRFM(2)/(2.DO*FOC*DEN)

SRFM(6)--SRFM(3)/(2.DO*FOC*DEN)

* INDICATE A MISS IF RAY HITS AN UNUSED PART OF THE PARABOLA

IF (SRFM(2).GE.SRFMD(1)-(SRFMD(2)-SRFMD(1))/1.D2) THEN

IF (SRFM(2}.LE.SRFMD(2}+(SRFMD(2)-SRFMD(I})/I.D2) THEN

IF (SRFM(3).GE.SRFMD(3)-(SRFMD(4)-SRFMD(3))/I.D2} THEN

IF (SRFM(3).LE.SRFMD(4)+(SRFMD(4)-SRFMD(3})/I.D2) THEN

MISS(I,J)=O

ENDIF

ENDIF

ENDIF

ENDIF

* FIND COMPONENTS OF RAY REFLECTED FROM MAIN REFLECTOR

RDOTN-R2(4}*SRFM(4)+R2(5)*SRFM(5)+R2(6)*SRFM(6)



RI(4)---R2(4)-2.*RDOTN*SRFM(4)

R1 (5) =R2 (5) -2. *RDOTN*SRFM (5)

R1 (6) =R2 (6) -2. *RDOTN*SRFM (6)

* FIND CROSS PRODUCT OF ACTUAL AND IDEAL REFLECTED RAYS TO THE

1 ANGLE (I, J) = (RI (5) *RA(3) -RA (2) *RI (6)) *'2. D0+

C (RI (4) *RA(3) -RA(1) *RI (6)) **2 .DO+

C (RI (4) *RA (2) -RA (i) *RI (5)) *'2. DO

ERROR ANALYSIS

K=O

RMSERR=O. DO

DO 2 I=l, 25

DO 2 J=i,25

RMSERR=RMSERR+ANGLE ( I, J)

K=K+MI SS ( I, J)

RMS ERR=DSQRT (RMSERR)

RETURN

STOP

END

APERTURE

* Type 1 Concept Output Code

SUBROUTINE OUT(FEED,TRANS,SCAN,ICN,SFOC)

IMPLICIT NONE

REAL*8 FEED(3),TRANS(5),SCAN(2),SRFAT(25,25,6),PI,

C SFOC(2,3),GCOEF(10),U,V

INTEGER*2 ICN,K(3)

CHARACTER*I20UTFILE

PI=3.14159265358979323846D0

U=SIN(SCAN(1)*PI/I.8D2)*COS(SCAN(2)*PI/I.8D2)

V=SIN(SCAN(1)*PI/I.SD2)*SIN(SCAN(2)*PI/I.SD2)

K(1)=48+ICN/100

K(2)=48+(ICN-(K(1)-48)*100)/lO

K(3)=48+ICN-(K(1)-48)*100-(K(2)-48)*10

CALL POSITF(SFOC,TRANS,GCOEF)

CALL POSIT(SRFAT,TRANS)

OUTFILE='TMRTIXXX.MOV'

OUTFILE(6:6)=CHAR(K(1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAJ_(K(3))

OPEN(4,FILE=OUTFILE,STATUS='UNKNOWN')

WRITE(4,'(A10,2F12.7)')'SCANNED TO ',SCAN(1),SCAN_2,

WRITE(4,'(5F15.10)')TRANS(4),TRANS(5),TRANS(3),TRANS(1),TRANS(2)
ENDFILE(4)

CLOSE(4)
* 20 GHz GRASP7 Input File

OUTFILE='TMRTIXXX.INP'

OUTFILE(6:6)=CHAR(K(1))

OUTFILE(7:7)=CHAR(K(2))

OUTFILE(8:8)=CHAR(K(3))

OPEN(4,FILE=OUTFILE,STATUS='UNKNOWN,)

WRITE(4,'(A30)')'***** GRASP77 INPUT FILE *****'

WRITE(4,'(A10,2F12.7)')'SCANNED TO ',SCAN(1),SCAN(2)

WRITE(4,'(FI2.7,412)')I.5D-2,2,1,0,O

WRITE(4,'(A31)')'** MAIN REFLECTOR INPUT DATA **'

WRITE(4,'(3F12.7)')0.,0.,O.
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WRITE (4
WRITE (4

WRITE (4
WRITE (4

WRITE (4

WRITE (4
WRITE (4

WRITE (4
WRITE (4

WRITE (4
WRITE (4

C

'(3F12.7)')I.,0.,0.

'(3F12.7)')0.,I.,0.

'(I2,2F12.7)')I,7.795,0.
'(312)')4,0,0

'(4F12.7)')0.,0.,0.,13.5

'(2F12.7)')5.315,5.315
'(A30)')'** SUB REFLECTOR INPUT DATA **'
'(3F12.7)')0.,0.,0.

'(3F12.7)')1.,0.,0.

'(3F12.7)')0.,I.,0.
'(I2,2FI2.7)')I,(SRFAT(25,13,2)+SRFAT(I,13,2))/2.D0,

(SRFAT(13,25,3)+SRFAT(13,1,3))/2.D0

WRITE(4,'(212)')3,0
WRITE(4,'(5F14.7)')GCOEF(1),GCOEF(2),GCOEF(3),GCOEF(4),GCOEF(5)

WRITE(4,'(5F14.7)')GCOEF(6),GCOEF(7),GCOEF(8),GCOEF(9),GCOEF(10)

WRITE(4,'(5FI2.7,I5)')0.,0.,0.,0.,0.,I

WRITE(4,'(2FI2.7)')(SRFAT(25,13,2)-SRFAT(1,13,2))/2.D0,
C (SRFAT(13,25,3)-SRFAT(13,1,3))/2.D0

WRITE(4,'(A21)')'** FEED INPUT DATA **'

WRITE(4,'(3FI2.7)')FEED(2),FEED(3),FEED(1)
WRITE(4,'(3F12.7)').964483694,0.,-.264142395

WRITE(4,'(3F12.7)')0.,1.,0.
WRITE(4,'(I2)')I

WRITE(4,'(6F12.7)')0.,O.,O.,O.,0.,O.
WRITE(4,'(F12.7,I2)')0.,1

WRITE(4,'(4FI2.7,312)')0.,0.,I.,90.,0,O,3
WRITE(4,'(I2)')6

WRITE(4,'(5FI2.7,I3)')-I5.,-15.,7.1574,0.,0.,1

WRITE(4,'(A40)')'** MAIN REFLECTOR FIELD SPECIFICATION **'
WRITE(4,'(I2)')I

WRITE(4 '(3F12.7)'}7.795,0.,I0.
WRITE(4 '(3F12.7)')1.,0.,0.

WRITE(4 '(3F12.7)')0.,1.,0.

WRITE(4 '(216,F12.7,213)')60,144,0.,0,0
WRITE(4 '(313)')0,-1,1

WRITE(4 '(F12.7)')10.
WRITE(4 '(2FI2.7)')U,V

WRITE(4 '(213)')0,1

WRITE(4 '(213)'}3,1

WRITE(4 '(4F12.7,216)')-l.D-2,-1.D-2,1.D-2,1.D-2,25,25
WRITE(4 '(416)')3,1
OUTFILE='TMRTIXXX.PI'

OUTFILE(6:6)-CHAR(K(1))
OUTFILE{7:7}-CHAR(K(Z))

OUTFILE(8:8)-CHAR(K(3))
WRITE(4,'(A12)')OUTFILE

WRITE(4,'(A39)')'** SUB REFLECTOR FIELD SPECIFICATION **'
WRITE(4,'(I2)')O

WRITE(4,'(A30)')'** FEED FIELD SPECIFICATION **'

WRITE(4,'(I2)')0

ENDFILE(4}
CLOSE(4)
OUTFILEm'TMRUVXXX.INP'

OUTFILE(6:6)'CHAR(K(1))

OUTFILE(7:7)'CHAR(K(2))

OUTFILE(8:8)'CHAR(K(3))

OPEN(4,FILE=OUTFILE,STATUS='UNKNOWN')
WRITE(4,'(A25)')'UVPROC CONTROL INPUT FILE'
OUTFILE''TMRTIXXX.Pl'

OUTFILE(6:6)=CHAR(K(1))



4O

OUTFILE (7 :7) =CHAR (K (2))

OUTFILE (8 :8) =CHAR (K ( 3 ) )

WRITE(4,' (AI2) ')OUTFILE

WRITE(4,' (612) ') i,I,i,i,0,0

WRITE(4, ' (212) ')I,i

WRITE(4,' (612) ')0,i,0,0,i,0

WRITE(4,' (A7)')'TEMP.P2'

WRITE(4, ' (I2) ' ) 3

WRITE(4,' (214)')101,101

WRITE(4,' (712) ')0,0,1,1,0,0,0

WRITE(4,' (412)')3,0,2,0

WRITE(4,' (F5.1) ')3.

WRITE(4,' (F5.1) ')10.

WRITE(4,' (512) ') 1,0,0,i,i

WRITE(4,'(F7.4)')0.1213

ENDFILE (4 )

CLOSE (4)
GHz GRASP7 Input File

OUTFILE= 'TMRT IXXX. INP '

OUTFILE (6 : 6) =CHAR (K (i) +I)

OUTFILE (7 : 7) =CHAR (K (2))

OUTFI LE (8 : 8 ) =CHAR (K (3 ) )

OPEN (4, FILE=OUTFI LE, STATUS=' UNKNOWN' )

WRITE(4,' (A30) ') '***** GRASP77 INPUT FILE *****'

WRITE(4,' (AI0,2FI2.7)')'SCANNED TO ',SCAN(l) ,SCAN(2)

WRITE(4, ' (F12.7,412) ')7.5D-3,2,1,0,0

WRITE(4, ' (A31) ') '** MAIN REFLECTOR INPUT DATA **'

WRITE(4,' (3F12.7) ')0.,0.,0.

WRITE(4,' (3F12.7) ')i.,0.,0.

WRITE(4,' (3F12.7) ')0.,I.,0.

WRITE(4,' (12,2F12.7) ')i,7.795,0.

WRITE(4,' (312)')4,0,0

WRITE(4, ' (4F12.7) ')0. ,0. ,0., 13.5

WRITE(4, ' (2F12.7) ')5.315,5.315

WRITE(4,' (A30) ') '** SUB REFLECTOR INPUT DATA **'

WRITE(4,' (3F12.7) ')0.,0.,0.

WRITE(4,' (3F12.7) ')i.,0.,0.

WRITE(4, ' (3F12.7) ')0. ,i.,0.

WRITE(4, ' (I2,2F12.7) ')i, (SRFAT(25,13,2)+SRFAT(I,13,2))/2.DO,

C (SRFAT(13,25,3)+SRFAT(13,1,3))/2.DO

WRITE(4,' (212) ') 3,0

WRITE(4,' (5F14.7) ')GCOEF(1),GCOEF(2),GCOEF(3),GCOEF(4),GCOEF(5)

WRITE(4, ' (5F14.7) ')GCOEF(6),GCOEF(7) ,GCOEF(8), GCOEF(9) ,GCOEF(IO)

WRITE(4, ' (5F12.7,I5) ')0. ,0. ,0.,0.,0., 1

WRITE(4, ' (2F12.7) ') (SRFAT(25,13,2)-SRFAT(I, 13,2))/2.DO,

C (SRFAT (13,25,3) -SRFAT(13, i, 3) )/2 .DO

WRITE(4,' (A21) ')'** FEED INPUT DATA **'

WRITE(4,' (3F12.7) ')FEED(2) ,FEED(3),FEED(I)

WRITE ( 4

WRITE ( 4

WR!TE (4

WRITE (4

WRITE (4

WRITE(4

WRITE (4

WRITE(4

WRITE (4

WRITE (4

WRITE (4

WRITE (4

' (3F12 . 7 ) ' ) . 96448_b94 , O. ,-. 264142395

' (3F12.7) ')0.,I.,0.

'(I2)')i

' (6F12.7) ')0.,0.,0.,0.,0. ,0.

• (FI2.7, I2) ')0. ,I

' (4F12.7,312) ')0.,0.,i.,90. ,0,0,3

'(I2)')6

' (5F12.7,I3) ')-15.,-15.,7.1574,0. ,0., 1

' (A40)') '** MAIN REFLECTOR FIELD SPECIFICATION **'

' (I2) ' ) 1

' (3F12.7) ')7.795,0. ,I0.

' (3F12.7)')I.,0.,0.
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WRITE(4, ' (3F12.7) ')u., i. ,0.

W" -TE(4,' (216,F12.7,2:) ') 60,144,0. ,0,0

W TE(4,' (313)')0,-i,i
WRITE(4,' (F12.7)')I0.

WRITE(4,' (2F12.7) ')U,V
WRITE(4,'(213)')0,1

WP.ITE(4, ' (213) ') 3,1
WRITE(4,' (4FI2.7,216)')-5.D-3,-5.D-3,5"D-3,5-D-3,25,25

WRITE(4,' (416)')3,1
OUTFILE- 'TMRT 1XXX. Pl '

OUTFILE (6 :6) =CHAR (K (i) +i)

OUTFILE (7 :7)_CHAR (K (2))
OUTFILE (8 :8 )=CHAR (K (3) )

WRITE (4, ' (AI2) ')OUTFILE
WRITE(4,'(A39)')'** SUB REFLECTOR FIELD SPECIFICATION **'

WRITE(4, ' (I2) ')0
WRITE(4,' (A30)')'** FEED FIELD SPECIFICATION **'

WRITE(4,' (I2) ') 0

ENDFILE (4)

CLOSE (4)
OUTFILE" 'TMRUVXXX •INP '

OUTFILE (6 :6) -CHAR (K (i) +I )
OUTFILE (7 :7) -CHAR (K (2) )

OUTFILE (8 :8) -CHAR (K (3))

OPEN (4, FILE-OUTFI LE, STATUS= 'UNKNOWN ')
WRITE(4,' (A25) ') 'UVPROC CONTROL INPUT FILE'
OUTFILE- 'TMRTIXXX. P1 '

OUTFILE (6 :6) =CHAR(K (i) +1)
OUTFILE (7 :7) _CHAR (K (2 ) )

OUTFILE (8 :8) _CHAR (K (3) )

WRITE_ 4, ' (A12) ')OUTFILE
WRITEI 4,' (612)')1,1,1,1,0,0

WRITEI4,'(212)')I,1

WRITE 4,' (612)')0,1,0,0,1,0
WRITE 4,' (A7)')'TEMP.P2'

WRITE 4,'(I2)')3

WRITE 4,' (214)')i01,I01
WRITE 4,' (712)')0,0,i,I,0,0,0

WRITE 4,' (412)')3,0,2,0

WRITE I4,' (F5.1)')3.
WRITE 14,' (FE.I)')10.

WRITE 14,' (512)')I,0,0,1,1
WRITE(4, ' (Y7.4) ') 0. 0606

ENDFILE (4)

CLOSE (4)
80 GHZ GRASP7 Input File

OUTFILE= 'TMRT 1XXX. INP '

OUTFILE (6 :6) =CHAR (K (I) +2 }
OUTFI LE (7 :7 )-CHAR (K (2 ) )

OUTFILE (8 :8 )-CHAR (K (3 ) )

OPEN (4, FILEffiOUTFILE, STATUS= 'UNKNOWN ')
%_ITE(4,' (A30)')'***** GRASP77 INPUT FILE *****'
_ ITE(4,' (A10,2F12.7)') 'SCANNED TO ',SCAN(1),SCAN(2)

WRITE(4,' (F12.7,412)')3.75D-3,2,1,0,0
WRITE(4,' (A31)')'** MAIN REFLECTOR INPUT DATA **'

WRITE (4, ' (3F12.7) ')0. ,0. ,0.

WRITE(4,' (3F12.7}')I.,0.,0.

WRITE(4, ' (3F12.7) ')0. ,1. ,0.

WRITE(4, ' (I2,2F12.7) ')1,7.795,0.

WRITE(4,' (312)')4,0,0
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WRITE.14, ' , " .i. ,) ' ) u. ,0. ,0., 13.5

WRITE (4, ' ,2F12.77 ' ) 5.215,5. 315

WRITE(4, ' (A30) ') '** SUB REFLECTOR INPUT DATA **'

WRITE(4, ' (3F12.7) ')0.,0.,0.

WRITE(4, ' (3F12.7) ')I. ,0. ,0.

WRITE(4, ' (3F12.7) ')0., i.,0.

WRITE(4, ' (I2,2F12.7) ') i, (SRFAT(25,13,2)+SRFAT(I, 13,2))/2.D0,

C (SRFAT(13,25,3)+SRFAT(13 1 3))/2.D0
WRITE(4, ' (212) ' 73,0 ' '

WRITE(4,' (5F14.7) ')GCOEF(1),GCOEF(2) ,SCOFF(3) ,SCOFF(4) ,SCOFF(5)

WRITE(4, ' (5F14.7) ')SCOFF(6) ,SCOFF(7) ,GCOEF(8) ,GCOEF(9) ,GCOEF(IO)

WRITE(4, ' (5F12.7,I5) ')0.,0.,0.,0.,0.,i

WRITE(4, ' (2F12.7) ') (SRFAT(25, 13,2)-SRFAT(I,13,2))/2.DO,

C (SRFAT(13,25,3)-SRFAT(13,1,3))/2. DO

WRITE(4,' (A21) '7 '** FEED INPUT DATA **'

WRITE(4,' (3F12.7)')FEED(2),FEED(3),FEED(17

WRITE(4, ' (3F12.7) ') .964483694,0. ,-.264142395

WRITE(4,' (3F12.7) ')0.,i.,0.

WRITE(4, ' (I2) ' ) 1

WRITE(4,' (6F12.7) ')0.,0.,0.,0.,0. ,0.

WRITE(4,' (F12.7,I2)')0.,I

WRITE(4, ' (4F12.7,312) ')0. ,0. ,1. ,90. ,0,0,3
WRITE(4,' (I2)')6

WRITE (4, ' (5F12.7, I3 ) ' ) -15., -15., 7. 1574,0. ,O. , 1

WRITE(4,' (A40)'),** MAIN REFLECTOR FIELD SPECIFICATION **,

WRITE(4,' (I2)'7 1

WRITE(4, ' (3F12.7) ')7.795,0.,i0.

WRITE(4,' (3F12.7) ,) I. ,0. ,0.

WRITE(4, ' (3F12.7) ')0.,i.,0.

WRITE(4,, (216,F12.7,213) ')60,144,0.,0,0

WRITE(4,' (313)')0,-i,i

WRITE(4, ' (FI2.7) ') i0.

WRITE(4, ' (2F12.7) ')U,V

WRITE(4, ' (213) ')0,i

WRITE(4, ' (213) ') 3,i

WRITE(4,' (4F12.7,216) '7-2-5D-3,-2.5D-3,2.5D-3 2.5D-3 25,25
WRITE(4,' (416) ')3,1 ' '

OUTFILE= ' TMRTIXXX. P1 '

OUTFILE (6 : 6) =CHAR (K (i) +2)

OUTFILE (7 :7) =CHAR (K (2))

OUTFILE (8 : 8) =CHAR (K (3) )

WRITE(4, ' (AI2) ') OUTFILE

WRITE(4,' (A39) ') '** SUB REFLECTOR FIELD SPECIFICATION **'

WRITE(4, ' (I2) ')0

WRITE(4,' (A30)')'** FEED FIELD SPECIFICATION **,

WRITE(4,' (I2)')0

ENDFI LE ( 4 )

CLOSE (4)

OUTFILE= ' TMRUVXXX. INP '

OUTFILE (6 : 6) =CHAR (K (1) +2, _

OUTFILE (7 :7 ) =CHAR (K (2))

OUTFILE (8 : 8) =CHAR (K (3))

OPEN (4, FILE=OUTFILE, STATUS= ' UNKNOWN ' )

WRITE(4,, (A25)')'UVPROC CONTROL INPUT FILE'

OUTFILE= 'TMRTIXXX. Pl '

OUTFILE (6 :6) =CHAR (K (1) +2)

OUTFILE (7 : 7) =CHAR (K (2) )

OUTFILE (8 : 8) =CHAR (K (3))

WRITE(4, ' (AI2) ' ) OUTFILE

WRITE(4,, (612) ') i,I,i,i,0,0
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WRITE

WRITE
WRITE
WRITE

WRITE
WRITE

WRITE
WRITE i

WRITE4

WRITE l
WRITE

4,'(212)')1,1

4,,(612)')0,I,0,0,i,0
4,'(A7)')'TEMP.P2'

40,(I2)')3
4,'(214)')i01,101
4,,(712),)o,o,I,1,o,o,o
4,'(412)')3,0,2,0
4,'(F5.1)')3.

4,'(F5.1)')I0.
4,'(512)')1,0,0,1,1
4,'(F7.4)')0.0303

ENDFILE (4)
CLOSe.(4)
RETURN
STOP

END

* Type 1 Concept Transmit Mode Raytracing Subreflector Focal Point

, Positioning Code

************************************************************************

SUBROUTINE POSITF(SFOC,TRANS,GCOEF)

IMPLICIT NONE
REAL*8 SRFA(25,25,6},SFOC(2,3),TRANS(5),SRFMD(4),FOC, FEED(3),

C SCAN(2),T(5),GCOEF(10),SFOCT(2,3),ALPHA,BETA,GAMMA,

C DELTA,C
INTEGER*2 I

COMMON /REFL/ SRFMD,SRFA, FOC,FEED,SCAN

T(1)-TRANS (3 )

T (2) -TRANS (4)

T(3) -TRANS (5)
T (4) -TRANS (1)

T (5)-TRANS (2)
DO I IIi,2

SFOCT(I,I)IT(1)+SRFA(13,13,1) -
C SIN(T(4))*(SFOC(I,2)-SRFA(13,13,2))+

C COS(T(4))*SIN(T(5))*(SFOC(I,3)-SRFA(13,13,3))+

C COS(T(4))*COS(T(5))*(SFOC(I,I)-SRFA(13,13,1))

SFOCT(I,2)-T(2)+SRFAfI3,13,2)+
C COS(T(4))*(SFOC(I,2)-SRFA(13,13,2))+

C SIN(T(4))*SIN(T(5))*(SFOC(I,3}-SRFA(13,13,3))+
C SIN(T(4))*COS(T(5))*(SFOC(I,I)-SRFA(13,13,1))

SFOCT(I,3)-T(3)+SRFA[13,13,3)+
C COS(T(5))*(SFOC(I,3)-SRFA(13,13,3))-

C SIN(T(5))*(SFOC(I,1)-SRFA(13,13,1))

C=DSQRT((SRFA(13,13,1)-SFOC(2,1))**2.DO+

C (SRFA(13,13,2)-SFOC(2,2))**2.D0+
C (SRFA(13,13,3}-SFOC(2,3))**2.D0)-

C DSQRT((SRFA(13,13,1)-SFOC(1,1))**2.D0+

C (SRFA(13,13,2)-SFOC(I,2))**2.D0+
C (SRFA(13,13,3)-SFOC(I,3))**2.D0)

BETA-SFOCT(2,2)-SFOCT(I,2)

GAMMA-SFOCT(2,3)-SFOCT(1,3)
DELTA-SFOCT(2,1)-SFOCT(I,1)

ALPHA-SFOCT(I,1)**2.DO+SFOCT(I,2)**2-D0+SFOCT(1,3)**2"D0-
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C SFOCT(2,1)**2.DO-SFOCT(2,2)**2.D0-SFOCT(2,3)**2"DO-

C C**2.DO

GCOEF(1) =4.DO*(BETA**2.D0-C**2-D0)

GCOEF(2) =8.DO*BETA*GAMMA

GCOEF(3) =4.DO*(GAMMA**2.D0-C**2.D0)

GCOEF(4) =4.DO*(ALPHA*BETA+2.DO*C**2.D0*SFOCT(2,2))

GCOEF(5) .4.DO*(ALPHA*GAMMA+2.D0*C**2.DO*SFOCT(2,3))

GCOEF(6) =ALPHA**2.DO-4.DO*C**2.DO*(SFOCT(2,1)**2.D0+

C SFOCT(2,2)**2.DO+SFOCT(2,3)**2.D0)

GCOEF(7) =4.DO*(C**2.D0-DELTA**2.DO)

GCOEF(8) =-4.DO*(ALPHA*DELTA+2.D0*C**2.D0*SFOCT(2,1))

GCOEF(9) =-8.D0*BETA*DELTA

GCOEF(IO)=-8.DO*GAMM *DELTA

RETURN

STOP

END
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